All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP(+) oxidoreductase (FNR). The redox centers in the complex--the 2Fe-2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR--are in close proximity; the shortest distance is 6.0 A. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.
The developing endosperm of rice (Oryza sativa, Os) synthesizes a large amount of storage proteins on the rough (r)ER. The major storage proteins, glutelins and prolamins, contain either intra or intermolecular disulfide bonds, and oxidative protein folding is necessary for the sorting of the proteins to the protein bodies. Here, we investigated an electron transfer pathway for the formation of protein disulfide bonds in the rER of the rice endosperm, focusing on the roles of the thiol-disulfide oxidoreductase, OsEro1. Confocal microscopic analysis revealed that N-glycosylated OsEro1 is localized to the rER membrane in the subaleurone cells, and that targeting of OsEro1 to the rER membrane depends on the N-terminal region from Met-1 to Ser-55. The RNAi knockdown of OsERO1 inhibited the formation of native disulfide bonds in the glutelin precursors (proglutelins) and promoted aggregation of the proglutelins through nonnative intermolecular disulfide bonds in the rER. Inhibition of the formation of native disulfide bonds was also observed in the seeds of the esp2 mutant, which lacks protein disulfide isomerase-like (PDIL)1;1, but shows enhanced OsEro1 expression. We detected the generation of H 2O2 in the rER of the WT subaleurone cells, whereas the rER-derived H2O2 levels decreased markedly in EM49 homozygous mutant seeds, which have fewer sulfhydryl groups than the WT seeds. Together, we propose that the formation of native disulfide bonds in proglutelins depends on an electron transfer pathway involving OsEro1 and OsPDIL.protein disulfide isomerase ͉ seed storage protein ͉ esp2 ͉ hydrogen peroxide ͉ protein body
In higher plants ferredoxin (Fd):NADP ϩ oxidoreductase (FNR) and Fd are each distributed in photosynthetic and nonphotosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K m value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K m for Fd III was 3.0 m and that for Fd I was 29 m. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.