Recent studies show that bone marrow (BM)-derived cells migrating into a dermal wound promote healing by producing collagen type I. However, their contribution to the repair process has not been fully verified yet. It is also unclear whether BM-derived cells participate in dermal fibrogenesis. We have addressed these issues using transgenic mice that harbor tissue-specific enhancer/promoter sequences of α2(I) collagen gene linked to either enhanced green fluorescent protein (COL/EGFP) or the luciferase (COL/LUC) reporter gene. Following dermal excision or subcutaneous bleomycin administration, a large number of EGFP-positive collagen-producing cells appeared in the dermis of COL/EGFP reporter mice. When wild-type mice were transplanted with BM cells from transgenic COL/EGFP animals and subjected to dermal excision, no EGFP-positive BM-derived collagen-producing cells were detected throughout the repair process. Luciferase assays of dermal tissues from COL/LUC recipient mice also excluded collagen production by BM-derived cells during dermal excision healing. In contrast, a limited but significant number of CD45-positive collagen-producing cells migrated from BM following bleomycin injection. These results indicate that resident cells in the skin are the major source of de novo collagen deposition in both physiological and pathological conditions, whereas BM-derived cells participate, in part, in collagen production during dermal fibrogenesis.
We describe the case of a 59-year-old Japanese woman presenting with generalized lentigines without systemic anomalies. She had a medical history of gastrointestinal stromal tumors (GISTs), in which gain-of-function mutations of the c-kit gene had recently been found. We detected a point mutation at codon 557 in exon 11 of leukocyte DNA from the patient. The stem cell factor-type III receptor tyrosine kinase pathway plays important roles in the regulation of melanocyte proliferation and differentiation. We speculate that the generalized lentigines of the patient may be caused by melanocyte proliferation due to the c-kit gene mutation.
The present study demonstrated for the first time that one-time injection of BLM-PLA microspheres can induce dermal fibrosis in C3H mice. BLM-PLA microspheres thus offer a labour-saving, simple and powerful tool to establish an animal model of BLM-induced dermal fibrosis.
We describe two cases of a 3-year-old Japanese boy and his 1-year-old sister presenting recessive dystrophic epidermolysis bullosa; a relatively mild phenotype. Blistering and scarring were limited to the acral region, and some fingernails and toenails were lost. PCR-RFLP and DNA sequencing analyses revealed compound heterozygotes for a splice-site mutation (6573 +1GtoC) and a nonsense mutation (E2857X) in the type VII collagen gene (COL7A1). Both mutations caused a premature termination codon (PTC). The mutation E2857X was located behind the candidate cleavage site within the NC-2 domain required for the assembly of anchoring fibrils. This PTC position may explain their mild phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.