Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.
Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.
Palaeognathous birds (Struthioniformes and Tinamiformes) have morphologically conserved karyotypes and less differentiated ZW sex chromosomes. To delineate interspecific chromosome orthologies in palaeognathous birds we conducted comparative chromosome painting with chicken (Gallus gallus, GGA) chromosome 1-9 and Z chromosome paints (GGA1-9 and GGAZ) for emu, double-wattled cassowary, ostrich, greater rhea, lesser rhea and elegant crested tinamou. All six species showed the same painting patterns: each probe was hybridized to a single pair of chromosomes with the exception that the GGA4 was hybridized to the fourth largest chromosome and a single pair of microchromosomes. The GGAZ was also hybridized to the entire region of the W chromosome, indicating that extensive homology remains between the Z and W chromosomes on the molecular level. Comparative FISH mapping of four Z-and/or W-linked markers, the ACO1/IREBP, ZOV3 and CHD1 genes and the EE0.6 sequence, revealed the presence of a small deletion in the proximal region of the long arm of the W chromosome in greater rhea and lesser rhea. These results suggest that the karyotypes and sex chromosomes of palaeognathous birds are highly conserved not only morphologically, but also at the molecular level; moreover, palaeognathous birds appear to retain the ancestral lineage of avian karyotypes.2
SUMMARYAgrobacterium tumefaciens-mediated transient transformation has been a useful procedure for characterization of proteins and their functions in plants, including analysis of protein-protein interactions. Agrobacterium-mediated transient transformation of Nicotiana benthamiana by leaf infiltration has been widely used due to its ease and high efficiency. However, in Arabidopsis this procedure has been challenging. Previous studies suggested that this difficulty was caused by plant immune responses triggered by perception of Agrobacterium. Here, we report a simple and robust method for Agrobacterium-mediated transient transformation in Arabidopsis. AvrPto is an effector protein from the bacterial plant pathogen Pseudomonas syringae that suppresses plant immunity by interfering with plant immune receptors. We used transgenic Arabidopsis plants that conditionally express AvrPto under the control of a dexamethasone (DEX)-inducible promoter. When the transgenic plants were pretreated with DEX prior to infection with Agrobacterium carrying a b-glucuronidase (GUS, uidA) gene with an artificial intron and driven by the CaMV 35S promoter, transient GUS expression was dramatically enhanced compared to that in mock-pretreated plants. This transient expression system was successfully applied to analysis of the subcellular localization of a cyan fluorescent protein (CFP) fusion and a protein-protein interaction in Arabidopsis. Our findings enable efficient use of Agrobacterium-mediated transient transformation in Arabidopsis thaliana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.