MicroRNAs play critical roles in the development and progression of human cancers. Although it has been reported that miR-106a* is downregulated in follicular lymphoma, its role in renal cell carcinoma (RCC) remains unknown. This study investigated the expression and role of miR-106a* in human RCC. Our results showed that the miR-106a* expression decreased dramatically in clinical RCC tissues and cell lines. In vitro, overexpression of miR-106a* suppressed RCC cell proliferation and S/G2 transition, whereas inhibition of miR-106a* promoted cell proliferation and S/G2 transition. It was also found that miR-106a* expression was inversely correlated with the expression of insulin receptor substrate 2 (IRS-2). IRS-2 was determined to be a direct target of miR-106a* by a luciferase reporter assay. Importantly, silencing IRS-2 resulted in the same biologic effects as those of miR-106a* overexpression in RCC cells, including inhibition of RCC cell proliferation and triggering of S/G2 cell cycle arrest with inhibition of the PI3K/Akt signaling pathway. These results indicate that miR-106a* affects RCC progression by targeting IRS-2 with suppression of the PI3K/Akt signaling pathway in RCC cells. The findings suggest miR-106a* as a novel strategy for RCC treatment.
Abstract. Cucurbitacin E is an important member of the cucurbitacin family and exhibits inhibitory effects in various types of cancer. Cucurbitacin is a potential antineoplastic drug; however, its anticancer effect in human prostate cancer (PC) remains unknown. The aim of the present study was to determine whether the effect of cucurbitacin E on the cell viability and apoptosis of the human PC cell line, LNCaP, was mediated by cofilin-1-and mammalian target of rapamycin (mTOR). The results of the present study demonstrated that cucurbitacin E significantly exhibited cytotoxicity, suppressed cell viability (P<0.0001) and induced apoptosis (P=0.0082) in LNCaP cells. In addition, it was demonstrated that treatment with cucurbitacin E significantly induced cofilin-1 (P=0.0031), p-mTOR (P=0.0022), AMP-activated protein kinase (AMPK; P=0.0048), cellular tumor antigen p53 (p53; P=0.0018) and caspase-9 (P=0.0026) protein expression in LNCaP cells, suggesting that cucurbitacin E exerts its effects on LNCaP cells through cofilin-1, mTOR, AMPK, p53 and caspase-9 signaling. These results suggested that cucurbitacin E maybe used as a therapeutic agent in the treatment of human PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.