Multi-objective optimization (MOO) is widely used for solving various engineering real-life problems. Meta-heuristic optimization has been regarded as an effective solution for such problems because it enables the successful examination of a broad range of candidate solutions and the selection of optimal ones. However, there is a high probability of the algorithms becoming ensnared in local minima due to the complex optimization surface and the unlimited number of viable solutions. Therefore, to provide the decision maker with the optimal non-dominated set of solutions, significant improvements must be made to the search process, where the efficient exploration of the population has a vital role in maintaining a good non-dominated solution in evolutionary algorithms. NSGA-II is regarded as the state of the art for the meta-heuristic MOO. NSGA-II and its variants have adopted the concept of crowding distance as a measure that can leverage the characteristics of the distribution of solutions in the search space and provide a highlevel of exploration. However, this method is not sufficient to effectively explore the search space because it ignores the direction of the exploration. In this paper, the angle quantization of solutions is combined with the crowding distance to create the MOGA-AQCD algorithm, which preserves equal exploration in all directions and aims at finding equal distribution of solutions within the search space. This approach is applied to a set of standard benchmark MOO functions. The results show that MOGA-AQCD is superior to NSGA-II and NSGA-III on the most evaluation measures for MOO.
Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation.
In image steganography, determining the optimum location for embedding the secret message precisely with minimum distortion of the host medium remains a challenging issue. Yet, an effective approach for the selection of the best embedding location with least deformation is far from being achieved. To attain this goal, we propose a novel approach for image steganography with high-performance, where extreme learning machine (ELM) algorithm is modified to create a supervised mathematical model. This ELM is first trained on a part of an image or any host medium before being tested in the regression mode. This allowed us to choose the optimal location for embedding the message with best values of the predicted evaluation metrics. Contrast, homogeneity, and other texture features are used for training on a new metric. Furthermore, the developed ELM is exploited for counter over-fitting while training. The performance of the proposed steganography approach is evaluated by computing the correlation, structural similarity (SSIM) index, fusion matrices, and mean square error (MSE). The modified ELM is found to outperform the existing approaches in terms of imperceptibility. Excellent features of the experimental results demonstrate that the proposed steganographic approach is greatly proficient for preserving the visual information of an image. An improvement in the imperceptibility as much as 28% is achieved compared to the existing state of the art methods.
In today’s world, millions of transactions are connected to online businesses, and the main challenging task is ensuring the privacy of sensitive information. Sensitive association rules hiding (SARH) is an important goal of privacy protection algorithms. Various approaches and algorithms have been developed for sensitive association rules hiding, differentiated according to their hiding performance through utility preservation, prevention of ghost rules, and computational complexity. A meta-heuristic algorithm is a good candidate to solve the problem of SARH due to its selective and parallel search behavior, avoiding local minima capability. This paper proposes simple genetic encoding for SARH. The proposed algorithm formulates an objective function that estimates the effect on nonsensitive rules and offers recursive computation to reduce them. Three benchmark datasets were used for evaluation. The results show an improvement of 81% in execution time, 23% in utility, and 5% in accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.