The prevalent need for very high speed digital signals processing in wireless communications has driven the communications system to high performance levels. The objective of this paper is to propose a novel structure for efficient implementation for the Fast Fourier Transform (FFT) processor to meet the requirement for high speed wireless communication system standards. Based on the algorithm, architecture analysis, the design of pipeline Radix 2 2 SDF FFT processor based on digit-slicing Multiplier-Less is proposed. Furthermore, this paper proposed an optimal constant multiplication arithmetic design to multiply a fixed point input selectively by one of the several present twiddle factor constants. The proposed architecture was simulated using MATLAB software and the Field Programmable Gate Array (FPGA) Virtex 4 was targeted to synthesis the proposed architecture. The design was tested in real hardware of TLA5201 logic analyzer and the ISE synthesis report results the high speed of 772.966 MHz with the total equivalent gate count of 14,854. Meanwhile, It can be found as significant improvement over Radix 2 2 DIF SDF FFT processor and can be concluded that the proposed pipeline Radix 2 2 DIF SDF FFT processor based on digit-slicing multiplier-less is an enable in solving problems that affect the most high speed wireless communication systems capability in FFT and possesses huge potentials for future related works and research areas.
Problem statement:The need for high performance transceiver with high Signal to Noise Ratio (SNR) has driven the communication system to utilize latest technique identified as over sampling systems. It was the most economical modulator and decimation in communication system. It has been proven to increase the SNR and is used in many high performance systems such as in the Analog to Digital Converter (ADC) for wireless transceiver. Approach: This research presented the design of the novel class of decimation and its VLSI implementation which was the sub-component in the over sampling technique. The design and realization of main unit of decimation stage that was the Cascaded Integrator Comb (CIC) filter, the associated half band filters and the droop correction are also designed. The Verilog HDL code in Xilinx ISE environment has been derived to describe the proposed advanced CIC filter properties. Consequently, Virtex-II FPGA board was used to implement and test the design on the real hardware. The ASIC design implementation was performed accordingly and resulted power and area measurement on chip core layout. Results: The proposed design focused on the trade-off between the high speed and the low power consumption as well as the silicon area and high resolution for the chip implementation which satisfies wireless communication systems. The synthesis report illustrates the maximum clock frequency of 332 MHz with the active core area of 0.308×0.308 mm 2 . Conclusion: It can be concluded that VLSI implementation of proposed filter architecture is an enabler in solving problems that affect communication capability in DSP application.
Problem statement: Fast Fourier Transform (FFT) is widely applied in OFDM trance-receiver communications system. Hence efficient FFT algorithm is always considered. Approach: This study proposed FPGA realization of high resolution high speed low latency floating point adder/subtractor for FFT in OFDM trance-receiver. The design was implemented for 32 bit pipelined adder/subtractor which satisfied IEEE-754 standard for floating-point arithmetic. The design was focused on the trade-off between the latency and speed improvement as well as resolution and silicon area for the chip implementation. In order to reduce the critical path and decrease the latency, the novel structure was designed and investigated. Results: Consequently, synthesis report indicated the latency of 4 clock cycles due to each stage operated within just one clock cycle. The unique structure of designed adder well thought out resulted 6691 equivalent gate count and lead us to obtain low area on chip. Conclusion: The synthesis Xilinx ISE software provided results representing the estimated area and delay for design when it is pipelined to various depths. The report showed the minimum delay of 3.592 ns or maximum frequency of 278.42 MHz
Problem statement:The need for wireless communication has driven the communication systems to high performance. However, the main bottleneck that affects the communication capability is the Fast Fourier Transform (FFT), which is the core of most modulators. Approach: This study presented on-chip implementation of pipeline digit-slicing multiplier-less butterfly for FFT structure. The approach taken; in order to reduce computation complexity in butterfly, digit-slicing multiplierless single constant technique was utilized in the critical path of Radix-2 Decimation In Time (DIT) FFT structure. The proposed design focused on the trade-off between the speed and active silicon area for the chip implementation. The new architecture was investigated and simulated with MATLAB software. The Verilog HDL code in Xilinx ISE environment was derived to describe the FFT Butterfly functionality and was downloaded to Virtex II FPGA board. Consequently, the Virtex-II FG456 Proto board was used to implement and test the design on the real hardware. Results: As a result, from the findings, the synthesis report indicates the maximum clock frequency of 549.75 MHz with the total equivalent gate count of 31,159 is a marked and significant improvement over Radix 2 FFT butterfly. In comparison with the conventional butterfly architecture, design that can only run at a maximum clock frequency of 198.987 MHz and the conventional multiplier can only run at a maximum clock frequency of 220.160 MHz, the proposed system exhibits better results. The resulting maximum clock frequency increases by about 276.28% for the FFT butterfly and about 277.06% for the multiplier. Conclusion: It can be concluded that on-chip implementation of pipeline digit-slicing multiplier-less butterfly for FFT structure is an enabler in solving problems that affect communications capability in FFT and possesses huge potentials for future related works and research areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.