In this article, the adsorption process of cadmium and copper using natural Jordanian (NJ) zeolite as adsorbent has been experimentally estimated. The samples of NJ zeolite were obtained from Al Mafraq discrete, north east of Jordan. The influence of the bulk concentration (C o), contact time (t) and different adsorbent masses (m) of NJ zeolite on the removal of heavy metal were evaluated. These variables had a considerable function in promoting the sorption process of heavy metal using the NJ zeolite. The initial concentration of heavy metals in the stock solution was extended between 80 and 600 mg/L. The batch adsorption method was employed to investigate the adsorption process. The experimental data were correlated using Freundlich and Langmuir empirical formula. The ability of NJ zeolite to eliminate cadmium and copper was estimated according to Langmuir isotherm empirical formula and found 25.9 and 14.3 mg/g for cadmium and copper, respectively. The kinetics of adsorption of cadmium and copper have been analyzed and correlated by first-order and second-order reaction model. It was noticed that adsorption of cadmium and copper was better correlated with pseudo-second-order kinetic model. The results presented that NJ zeolite is practical adsorbent for removing cadmium and copper ion metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.