Obesity has been suggested to be associated with an increased susceptibility to bacterial infection. However, few studies have examined the effect of obesity on the immune response to bacterial infections. In the present study, we investigated the effect of obesity on innate immune responses to Porphyromonas gingivalis infection, an infection strongly associated with periodontitis. Mice with dietinduced obesity (DIO) and lean control C57BL/6 mice were infected orally or systemically with P. gingivalis, and periodontal pathology and systemic immune responses were examined postinfection. After oral infection with P. gingivalis, mice with DIO had a significantly higher level of alveolar bone loss than the lean controls. Oral microbial sampling disclosed higher levels of P. gingivalis in mice with DIO vs. lean mice during and after infection. Furthermore, animals with DIO exposed to oral infection or systemic inoculation of live P. gingivalis developed a blunted inflammatory response with reduced expression of TNF-␣, IL-6, and serum amyloid A (SAA) at all time points compared with lean mice. Finally, peritoneal macrophages harvested from mice with DIO and exposed to P. gingivalis exhibited reduced levels of proinflammatory cytokines compared with lean mice and when exposed to P. gingivalis LPS treatment had a significantly reduced recruitment of NF-B to both TNF-␣ and IL-10 promoters 30 min after exposure. These data indicate that obesity interferes with the ability of the immune system to appropriately respond to P. gingivalis infection and suggest that this immune dysregulation participates in the increased alveolar bone loss after bacterial infection observed in mice with DIO.cytokine ͉ P. gingivalis ͉ inflammatory response ͉ macrophage ͉ chromatin immunoprecipitation
Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.
Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg) is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM) from young (2-months) and aged (1-year and 2-years) mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC), macrophage colony stimulating factor (MCP)-1, macrophage inflammatory protein (MIP)-1α and regulated upon activation normal T cell expressed and secreted (RANTES), as well as nitric oxide (NO, measured as nitrite), and prostaglandin E2 (PGE2) from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3), we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the periodontal pathogen Pg.
Mast cells (MCs) are derived from hemopoietic precursor cells, undergo their maturation in peripheral tissues, and play a significant role in both the innate and adaptive immune response. Cross-linking of the FcεRI on MCs initiates activation of several cytoplasmic protein tyrosine kinases which rapidly lead to phosphorylation and recruitment of adaptor molecules. These effects trigger the release of preformed mediators stored in the cytoplasmic granules, including histamine, serotonin and tryptase, as well as newly synthesized mediators, such as cytokines/chemokines, prostaglandins, leukotrienes, and growth factors. Serotonin (5-HT) is a bioactive monoamine, which has seven specific cell surface membrane bound receptors which are coupled to G-proteins, plays an important role in the central and peripheral nervous system, and is one of the key mediators in signaling between nervous and immune systems. Serotonin is not stored in all MC types but is implicated in MC adhesion, chemotaxis, tumorigenesis, and tissue regeneration through smooth muscle differentiation of stromal cells. Recent evidence indicates that serotonin has immunoregulatory actions that may be important in neuropsychiatric conditions. Chemokines, RANTES/CCL5, MCP-1/CCL2, and related molecules, constitute the C-C class of chemokine supergene family, play a role in regulating T helper-cell cytokine production and MC trafficking, and are involved in histamine and serotonin generation and MC functions. Pro-inflammatory cytokines such as interleukin-1-β and tumor necrosis factor which mediate MC response, are capable of activating p38 MAPK, and might increase serotonin generation through p38 MAPK activation. Here, we review the relationship between MCs and serotonin and its role in inflammatory diseases and neuroimmune interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.