This paper proposes a communication-free control strategy at the offshore wind farm (OWF) level to enhance onshore fault ride-through (FRT) grid code compliance of the voltage source converter (VSC)-based multi-terminal high voltage direct current (MT-HVDC) grid. In this proposal, the emerging virtual synchronous generator (VSG) concept is employed to equip the Type 4 wind turbine generator (WTG)s with inherent grid forming ability. Accordingly, it is proposed to switch the offshore HVDC converters control mode from grid forming to grid feeding during onshore FRT period to realize direct wind power in-feed reduction as a function of the severity of MT-HVDC grid's overvoltage. The related dynamics are mainly characterized by the high-speed current control loop, so improved OWF response is achieved during onshore FRT period as conventional voltage/frequency modulation strategies are not employed. New analysis/amendments are also proposed to study and improve the transient active power reduction sharing between the WTGs in first few power cycles under wind wake effect. Finally, with the objective of a smooth transfer of HVDC converters and WTGs in several proposed operation states, a set of state machines are proposed considering whole WTG's dynamics. Comprehensive time-domain simulations are performed with averaged electromagnetic transient models to demonstrate the improved onshore FRT behavior in terms of minimizing the electrical stress at both MT-HVDC grid and OWF levels. INDEX TERMS Fault-ride-through, multi-terminal HVDC grid, offshore wind farm, power reduction method, type 4 WTG, virtual synchronous generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.