The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family of transcriptional coactivators are regulators of mitochondrial oxidative capacity and content in skeletal muscle. Many of these conclusions are based primarily on gain-of-function studies using muscle-specific overexpression of PGC1s. We have previously reported that genetic deletion of both PGC-1α and PGC-1β in adult skeletal muscle resulted in a significant reduction in oxidative capacity with no effect on mitochondrial content. However, the contribution of PGC-1-related coactivator (PRC), the third PGC-1 family member, in regulating skeletal muscle mitochondria is unknown. Therefore, we generated an inducible skeletal muscle-specific PRC knockout mouse (iMS-PRC-KO) to assess the contribution of PRC in skeletal muscle mitochondrial function. We measured mRNA expression of electron transport chain (ETC) subunits as well as markers of mitochondrial content in the iMS-PRC-KO animals and observed an increase in ETC gene expression and mitochondrial content. Furthermore, the increase in ETC gene expression and mitochondrial content was associated with increased expression of PGC-1α and PGC-1β. We therefore generated an adult inducible PGC-1 knockout mouse in which all PGC-1 family members are deleted (iMS-PGC-1TKO). The iMS-PGC-1TKO animals exhibited a reduction in ETC mRNA expression and mitochondrial content. These data suggest that in the absence of PRC alone, compensation occurs by increasing PGC-1α and PGC-1β to maintain mitochondrial content. Moreover, removal of all three PGC-1s in skeletal muscle result in a reduction in both ETC mRNA expression and mitochondrial content. Taken together, these results suggests that PRC plays a role in maintaining baseline mitochondrial content in skeletal muscle.
In nature, the bioaccumulative potent neurotoxin methylmercury (MeHg) is produced from inorganic mercury (Hg) predominantly by anaerobic microorganisms. Hg-contaminated soils are a potential source of MeHg due to microbial activity. We examine streambank soils collected from the contaminated East Fork Poplar Creek (EFPC) in Tennessee, USA, where seasonal variations in MeHg levels have been observed throughout the year, suggesting active microbial Hg methylation. In this study, we characterized the microbial community in contaminated bank soil samples collected from two locations over a period of one year and compared the results to soil samples from an uncontaminated reference site with similar geochemistry (n = 12). Microbial community composition and diversity were assessed by 16S rRNA gene amplicon sequencing. Furthermore, to isolate potential methylators from soils, enrichment cultures were prepared using selective media. A set of three clade-specific primers targeting the gene hgcA were used to detect Hg methylators among the δ-Proteobacteria in EFPC bank soils across all seasons. Two families among the δ-Proteobacteria that have been previously associated with Hg methylation, Geobacteraceae and Syntrophobacteraceae, were found to be predominant with relative abundances of 0.13% and 4.0%, respectively. However, in soil enrichment cultures, Firmicutes were predominant among families associated with Hg methylation. Specifically, Clostridiaceae and Peptococcaceae and their genera Clostridium and Desulfosporosinus were among the ten most abundant genera with relative abundances of 2.6% and 1.7%, respectively. These results offer insights into the role of microbial communities on Hg transformation processes in contaminated bank soils in EFPC. Identifying the biogeochemical drivers of MeHg production is critical for future remediation efforts.
Immobilization of mercury (Hg) leaching from bank soils of East Fork Poplar Creek (EFPC) is considered part of remediation strategies to mitigate the amount of Hg entering the creek. Different approaches are currently being evaluated, such as utilizing engineered sorbents to immobilize Hg species in EFPC bank soils. However, the influence of environmental microbes on the immobilization of Hg by sorbents is unknown. Organocation-modified phyllosilicate clay minerals (organoclays) are widely used as sorbents for the immobilization of contaminants. This study evaluates the interactions of Serratia marcescens and Burkholderia thailandensis with the sorbent Organoclay PM-199 and their impact on the immobilization of Hg under aerobic conditions. We evaluated the competitive binding of Hg between sorbents and selected microorganisms in a series of pure culture studies using bacterial strains identified in EFPC bank soil samples. Our results suggest that Hg sorption by Organoclay PM-199 is not significantly impacted by common soil bacteria present in EFPC, specifically Serratia marcescens and Burkholderia thailandensis, which are known to form biofilms. These findings suggest that sorbent amendments are an effective strategy for the remediation of Hg contamination in natural ecosystems.
Nonpathogenic microbes play a vital role in recycling of waste products [10]. Some of their activities include degrading organic materials and recycling nutrients in the soil [10], biodegradation, wastewater treatment process, and creating alternative energy. Microorganisms can degrade household wastes and human wastes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.