SQL Injection Attack (SQLIA) is a common cyberattack that target web application database. With the ever increasing and varying techniques to exploit web application SQLIA vulnerabilities, there is no a comprehensive method that can solve this kind of attacks. Therefore, these various of attack techniques required to establish many methods against in order to mitigate its threats. However, most of these methods have not yet been evaluated, where it is still just theories and require to implement and measure its performance and set its limitation. Moreover, most of the existing SQL injection countermeasures either used syntax-based detection methods or a list of predefined rules to detect the SQL injection, which is vulnerable in advance and sophisticated type of attacks because attackers create new ways to evade the detection utilizing their pre-knowledge. Although semantic-based features can improve the detection, up to our knowledge, no studies focused on extracting the semantic features from SQL stamens. This paper, investigates a designed model that can improve the efficacy of the SQL injection attack detection using machine learning techniques by extracting the semantic features that can effectively indicate the SQL injection attack. Also, a tenfold approach will be used to evaluate and validate the proposed detection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.