The mineral composition and melt inclusions of ultramafic lamprophyres of the Terina complex were investigated. The rocks identified were aillikites, mela-aillikites, and damtjernites, and they were originally composed of olivine macrocrysts and phenocrysts, as well as phlogopite phenocrysts in carbonate groundmass, containing phlogopite, clinopyroxene and feldspars. Minor and accessory minerals were fluorapatite, ilmenite, rutile, titanite, and sulphides. Secondary minerals identified were quartz, calcite, dolomite, serpentine, chlorite, rutile, barite, synchysite-(Ce), and monazite-(Ce). Phlogopite, calcite, clinopyroxene, Ca-amphibole, fluorapatite, magnetite, and ilmenite occurred as daughter-phases in melt inclusions. The melt inclusions also contained Fe–Ni sulphides, synchysite-(Ce) and, probably, anhydrite. The olivine macrocrysts included orthopyroxene and ilmenite, and the olivine phenocrysts included Cr-spinel and Ti-magnetite inclusions. Crystal-fluid inclusions in fluorapatite from damtjernites contain calcite, clinopyroxene, dolomite, and barite. The data that were obtained confirm that the ultramafic lamprophyres of the Terina complex crystallized from peridotite mantle-derived carbonated melts and they have not undergone significant fractional crystallization. The investigated rocks are considered to be representative of melts that are derived from carbonate-rich mantle beneath the Siberian craton.
In this study, we discuss mineral chemistry data, melt inclusion study results, and report Ar-Ar phlogopite age for the aillikite dykes of the Arbarastakh alkaline-carbonatite complex on the Aldan-Stanovoy shield, Russia. Aillikite was crystallised at 631 ± 8.5 Ma, coeval with the intrusion age of the Arbarastakh rocks. The Arbarastakh complex was formed during the late Neoproterozoic epoch of REE-Nb ore-bearing alkaline-carbonatite magmatic activity that was widespread on the southwestern and southern margins of the Siberian craton, related to rifting processes during the breakup of the supercontinent Rodinia. The aillikites show mineralogical characteristics of primitive magmas such as highly forsteritic olivine, Mg-ilmenite, and Cr-rich spinel. The variance in olivine zonation, morphologies, and chemical element distribution indicate that olivine in the aillikites is represented by several genetic types: xenogenic olivines (Fe-poor cores) from the sheared peridotite; olivine antecrysts (Fe-rich cores) related to mantle metasomatism by preceding proto-aillikite melt; and olivine phenocrysts formed during crystallization of aillikite melt. The latter shows decreasing Ni and Cr due to fractional crystallization of olivine, ilmenite, and chromite; along with increasing Mn and Ca concentrations that are consistent with enrichment of these elements in the residual melt. The olivine phenocrysts chemistry shows variations that are characteristic of the presence of phlogopite and carbonate in the mantle source (low 100*Ca/Fe (0.4-1.2) and 100*Mn/Fe (1-2), moderate 100*Ni/Mg (1.4-0.4)). Spinel shows a wide compositional variation with two compositional zoning trends, one of which follows the titanomagnetite trend, while the other follows the qandilite-rich magnesio-ulvöspinel-magnetite one. The latter trend indicates an increase in fO2 and attendant Fe oxidation to Fe3+ during crystallization. Ilmenite composition evolution (from Mg-rich to Mn-rich) also reflects the carbonate-rich nature of aillikite melt. We identify primary melt inclusions hosted in phlogopite and secondary melt inclusions in olivine; both melt inclusions types have daughter minerals dominated by dolomite, calcite, Na-Ca carbonates, phosphates, and phlogopite, consistent with the carbonate-rich nature of aillikite melt. The calculated temperatures reflect the early stage of aillikite crystallization, with values ranging from 1169 to 1296°C and fO2 values (olivine-spinel pair) varying from +0.40 to +1.03 ΔFMQ, and from ΔNNO −0.9 to ΔNNO −2.0 (perovskite oxygen barometer); in contrast, the homogenization temperature of the secondary melt inclusions in olivine (700-720 °C) characterizes late-stage aillikite melt evolution. The carbonate-rich nature of the Arbarastakh aillikite and its similar age to the carbonatites are consistent with a genetic relationship between them.
Ultramafic lamprophyres (UMLs) are mantle rocks that provide important information about the composition of specific carbonate–silicate alkaline melts in the mantle as well as the processes contributing to their origin. Minerals of the spinel group typically occur in UMLs and have a unique “genetic memory.” Investigations of the spinel minerals from the UMLs of the Chadobets complex show the physicochemical and thermodynamic features of the alkaline rocks’ crystallization. The spinels of these UMLs have four stages of crystallization. The first spinel xenocrysts were found only in damtjernite pipes, formed from mantle peridotite, and were captured during the rising of the primary melt to the surface. The next stages of the spinel composition evolution are related to the high-chromium spinel crystallization, which changed to a high-alumina composition. The composition then changed to magnesian ulvöspinel–magnetites with strong decreases in the Al and Cr amounts caused by the release of carbon dioxide, rapid temperature changes, and crystallization of the main primary groundmass minerals such as phlogopite and carbonates. Melt inclusion analyses showed the predominance of aluminosilicate (phlogopite, clinopyroxene, and/or albite) and carbonate (calcite and dolomite) daughter phases in the inclusions that are consistent with the chemical evolution of the Cr-spinel trend. The further evolution of the spinels from magnesian ulvöspinel–magnetite to Ti-magnetite is accompanied by the formation of atoll structures caused by resorption of the spinel minerals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.