Assessing water resources vulnerability is the foundation of local water resources management. However, as one of the major water systems in China, there is no existing evaluation index system that can effectively assess water resource vulnerability for the Huai River basin. To address this issue, we identified key vulnerability factors, constructed an evaluation index system, and applied such system to evaluate water resources vulnerability for the Huai River basin empirically in this paper. Specifically, our evaluation index system consists of 18 indexes selected from three different aspects: water shortage, water pollution, and water-related natural disaster. Then, the improved blind deletion rough set method was used to reduce the size of the evaluation index while keep the evaluation power. In addition, the improved conditional information entropy rough set method was employed to calculate the weights of evaluation indexes. Based on the reduced index system and calculated weights, a rough set cloud model was applied to carry out the vulnerability evaluation. The empirical results show that the Huai River basin water resources were under severe vulnerability conditions for most of the time between 2000 and 2016, and the Most Stringent Water Resources Management System (MS-WRMS) established in 2012 did not work effectively as expected.
The Huang-Huai-Hai River Basin plays an important strategic role in China’s economic development, but severe water resources problems restrict the development of the three basins. Most of the existing research is focused on the trends of single hydrological and meteorological indicators. However, there is a lack of research on the cause analysis and scenario prediction of water resources vulnerability (WRV) in the three basins, which is the very important foundation for the management of water resources. First of all, based on the analysis of the causes of water resources vulnerability, this article set up the evaluation index system of water resource vulnerability from three aspects: water quantity, water quality and disaster. Then, we use the Improved Blind Deletion Rough Set (IBDRS) method to reduce the dimension of the index system, and we reduce the original 24 indexes to 12 evaluation indexes. Third, by comparing the accuracy of random forest (RF) and artificial neural network (ANN) models, we use the RF model with high fitting accuracy as the evaluation and prediction model. Finally, we use 12 evaluation indexes and an RF model to analyze the trend and causes of water resources vulnerability in three basins during 2000–2015, and further predict the scenarios in 2020 and 2030. The results show that the vulnerability level of water resources in the three basins has been improved during 2000–2015, and the three river basins should follow the development of scenario 1 to ensure the safety of water resources. The research proved that the combination of IBDRS and an RF model is a very effective method to evaluate and forecast the vulnerability of water resources in the Huang-Huai-Hai River Basin.
The vulnerability of water resources is an important criterion for evaluating the carrying capacity of water resources systems under the influence of climate change and human activities. Moreover, assessment and prediction of river basins’ water resources vulnerability are important means to assess the water resources security state of river basins and identify possible problems in future water resources systems. Based on the constructed indicator system of water resources vulnerability assessment in Song-Liao River Basin, this paper uses the neighborhood rough set (abbreviated as NRS) method to reduce the dimensionality of the original indicator system to remove redundant attributes. Then, assessment indicators’ standard values after dimensionality reduction are taken as the evaluation sample, and the random forest regression (abbreviated as RF) model is used to assess the water resources vulnerability of the river basin. Finally, based on data under three different future climate and socio-economic scenarios, scenario predictions are made on the vulnerability of future water resources. The results show that the overall water resources vulnerability of the Song-Liao River Basin has not improved significantly in the past 18 years, and the overall vulnerability of the Song-Liao River Basin is in the level V of moderate to high vulnerability. In the future scenario 1, the overall water resources vulnerability of the river basin will improve, and it is expected to achieve an improvement to the level III of moderate to low vulnerability. At the same time, the natural vulnerability and vulnerability of carrying capacity will increase significantly in the future, and the man-made vulnerability will increase slowly, which will deteriorate to the level V of moderate to high vulnerability under Scenario 3. Therefore, taking active measures can significantly reduce the vulnerability of nature and carrying capacity, but man-made vulnerability will become a bottleneck restricting the fragility of the overall water resources of the river basin in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.