The outdoor images captured in sand dust weather often suffer from poor contrast and color distortion, which seriously interfere with the performance of intelligent information processing systems. To solve the issues, a novel enhancement algorithm based on fusion strategy is proposed in this paper. It includes two components in sequence: sand removal via the improved Gaussian model-based color correction algorithm and dust elimination using the residual-based convolutional neural network (CNN). Theoretical analysis and experimental results show that compared with the prior sand dust image enhancement methods, the proposed fusion strategy can effectively correct the overall yellowing hue and remove the dust haze disturbance, which provides a constructive idea for the future development of sand dust image enhancement.
Numerous sand dust image enhancement algorithms have been proposed in recent years. To our best acknowledge, however, most methods evaluated their performance with noreference way using few selected real-world images from internet. It is unclear how to quantitatively analysis the performance of the algorithms in a supervised way and how we could gauge the progress in the field. Moreover, due to the absence of largescale benchmark datasets, there are no well-known reports of data-driven based method for sand dust image enhancement up till now. To advance the development of deep learning-based algorithms for sand dust image reconstruction, while enabling supervised objective evaluation of algorithm performance. In this paper, we presented a comprehensive perceptual study and analysis of real-world sand dust images, then constructed a Sand-dust Image Reconstruction Benchmark (SIRB) for training Convolutional Neural Networks (CNNs) and evaluating algorithms performance. In addition, we adopted the existing image transformation neural network trained on SIRB as baseline to illustrate the generalization of SIRB for training CNNs. Finally, we conducted the qualitative and quantitative evaluation to demonstrate the performance and limitations of the state-of-thearts (SOTA), which shed light on future research in sand dust image reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.