Tropical Cyclones (TCs) are the most severe natural disasters in the Western North Pacific Ocean (WNP). While previous studies reported evident changes over certain regions or seasons between typical periods, there is a lack of a complete picture of the long-term variations in TC activities in the WNP. This study carried out a comprehensive investigation on the spatiotemporal variations in TC genesis locations and transit pathways in the WNP, based on the TC best-track datasets from the China Meteorological Administration Shanghai Typhoon Institute. The results showed that the TC genesis and occurrence frequencies showed drastic decreases and westward shifts in the WNP from 1950 to 2019. The greatest decrease in TC genesis occurred for Tropical Depressions (TDs: 10.8−17.1 m/s) and Typhoons (TYs: > 32.7 m/s). The number of Tropical Storms (TSs: 17.2−32.6 m/s) and the mean intensity (2 min maximum sustained wind speed) of TCs overall showed no evident change. The decadal average of TC genesis frequency increased by 63% in the near-coast seas (WNPO), but decreased by 46% near the central Pacific Ocean (WNCP), demonstrating a westward shift for TC genesis locations. The TC genesis and occurrence frequencies also showed significant declines in the southern Philippine Sea (SPS) and South China Sea (SCS), while they showed a lower reduction in the Eastern East China Sea (EECS), the northern ocean edge of TC genesis areas, resulting in an increase in the average latitude of TC genesis locations, a spurious northward shift. The La Niña and El Niño years showed contrasting effects on TC genesis frequency and landfall ratios. There were greater instances of TC genesis and greater landfall ratios during the La Niña mature phase, while there were fewer TC formations and lower landfall ratios during the short duration (SD) El Niño developing phase. The TC genesis locations showed a distinct northwestward shift during La Niña years compared to those during El Niño years.
Rapid damage prediction for wind disasters is significant in emergency response and disaster mitigation, although it faces many challenges. In this study, a 1-km grid of wind speeds was simulated by the Holland model using the 6-h interval records of maximum wind speed (MWS) for tropical cyclones (TC) from 1949 to 2020 in South China. The MWS during a TC transit was used to build damage rate curves for affected population and direct economic losses. The results show that the Holland model can efficiently simulate the grid-level MWS, which is comparable to the ground observations with R2 of 0.71 to 0.93 and mean absolute errors (MAEs) of 3.3 to 7.5 m/s. The estimated damage rates were in good agreement with the reported values with R2 = 0.69–0.87 for affected population and R2 = 0.65–0.84 for GDP loss. The coastal areas and the Guangdong-Hong Kong-Macao Greater Bay Area have the greatest risk of wind disasters, mainly due to the region’s high density of population and developed economy. Our proposed method is suitable for rapid damage prediction and supporting emergency response and risk assessment at the community level for TCs in the coastal areas of China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.