Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial.
Intense training is the most clinically successful treatment modality following incomplete spinal cord injuries (SCIs). With the advent of plasticity enhancing treatments, understanding how treatments might interact when delivered in combination becomes critical. Here, we investigated a rational approach to sequentially combine treadmill locomotor training with antibody mediated suppression of the fiber growth inhibitory protein Nogo-A. Following a large but incomplete thoracic lesion, rats were immediately treated with either anti-Nogo-A or control antibody (2weeks) and then either left untrained or step-trained starting 3weeks after injury for 8weeks. It was found that sequentially combined therapy improved step consistency and reduced toe dragging and climbing errors, as seen with training and anti-Nogo-A individually. Animals with sequential therapy also adopted a more parallel paw position during bipedal walking and showed greater overall quadrupedal locomotor recovery than individual treatments. Histologically, sequential therapy induced the greatest corticospinal tract sprouting caudally into the lumbar region and increased the number of serotonergic synapses onto lumbar motoneurons. Increased primary afferent sprouting and synapse formation onto lumbar motoneurons observed with anti-Nogo-A antibody were reduced by training. Animals with sequential therapy also showed the highest reduction of lumbar interneuronal activity associated with walking (c-fos expression). No treatment effects for thermal nociception, mechanical allodynia, or lesion volume were observed. The results demonstrate that sequential administration of anti-Nogo-A antibody followed in time with intensive locomotor training leads to superior recovery of lost locomotor functions, which is probably mediated by changes in the interaction between descending sprouting and local segmental networks after SCI.
A, y-axis intersect; B, slope coefficient; CB, combination of ES and TR; CG, spinal cord injured cage controls; CT, intact controls; ES, epidural stimulation; LCD, local capillary density. LCFR, local capillary to fiber ratio; R 2 , coefficient of determination; TR, locomotor trained. † P < 0.05 vs. CT, ‡ P < 0.05 vs. CB, § P < 0.05 vs. CG.
Epidural electrical stimulation (ES) of the lumbar spinal cord combined with daily locomotor training has been demonstrated to enhance stepping ability after complete spinal transection in rodents and clinically complete spinal injuries in humans. Although functional gain is observed, plasticity mechanisms associated with such recovery remain mostly unclear. Here, we investigated how ES and locomotor training affected expression of chondroitin sulfate proteoglycans (CSPG), perineuronal nets (PNN), and synaptic plasticity on spinal motoneurons. To test this, adult rats received a complete spinal transection (T9–T10) followed by daily locomotor training performed under ES with administration of quipazine (a serotonin (5-HT) agonist) starting 7 days post-injury (dpi). Excitatory and inhibitory synaptic changes were examined at 7, 21, and 67 dpi in addition to PNN and CSPG expression. The total amount of CSPG expression significantly increased with time after injury, with no effect of training. An interesting finding was that γ-motoneurons did not express PNNs, whereas α-motoneurons demonstrated well-defined PNNs. This remarkable difference is reflected in the greater extent of synaptic changes observed in γ-motoneurons compared to α-motoneurons. A medium negative correlation between CSPG expression and changes in putative synapses around α-motoneurons was found, but no correlation was identified for γ-motoneurons. These results suggest that modulation of γ-motoneuron activity is an important mechanism associated with functional recovery induced by locomotor training under ES after a complete spinal transection.
Rehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects. Three separate experimental conditions were assessed. In Experiment I, paired associative stimulation (PAS) was applied, involving repeated pairing of single pulses of TMS and tSCS, either arriving simultaneously at the spinal motoneurones (PAS0ms) or slightly delayed (PAS5ms). Corticospinal and spinal excitability, and motor performance, were assessed before and after the PAS interventions in 24 subjects. Experiment II compared the immediate effects of tSCS and PNS on corticospinal excitability in 20 subjects. Experiment III compared the immediate effects of tSCS with tSCS delivered at the same stimulation amplitude but modulated with a carrier frequency (in the kHz range) on corticospinal excitability in 10 subjects. Electromyography (EMG) electrodes were placed over the Tibialis Anterior (TA) soleus (SOL) and vastus medialis (VM) muscles and stimulation electrodes (cathodes) were placed on the lumbar spine (tSCS) and lateral to the popliteal fossa (PNS). TMS over the primary motor cortex (M1) was paired with tSCS or PNS to produce Motor Evoked Potentials (MEPs) in the TA and SOL muscles. Simultaneous delivery of repetitive PAS (PAS0ms) increased corticospinal excitability and H-reflex amplitude at least 5 min after the intervention, and dorsiflexion force was increased in a force-matching task. When comparing effects on descending excitability between tSCS and PNS, a subsequent facilitation in MEPs was observed following tSCS at 30-50 ms which was not present following PNS. To a lesser extent this facilitatory effect was also observed with HF- tSCS at subthreshold currents. Here we have shown that repeated pairing of TMS and tSCS can increase corticospinal excitability when timed to arrive simultaneously at the alpha-motoneurone and can influence functional motor output. These results may be useful in optimizing stimulation parameters for neuroplasticity in people living with SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.