Abstract:A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil samples can therefore be extremely useful in monitoring the condition of power transformers.
Abstract:The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.
Frequency Domain Spectroscopy (FDS) is an effective tool allowing assessing the condition of oil-paper insulation system in power equipment. However, results from these measurements are known to be greatly influenced by various parameters, including insulation aging, moisture content, and insulation geometry/volume, together with environmental condition such as temperature. In this contribution, a series of experiments have been performed under controlled laboratory conditions. The dielectric response of the oil impregnated paper, along with the degree of polymerization and moisture content, were monitored. Since dielectric parameters are geometry dependent, poles (independent of the geometry) which depends on resistivity and permittivity, were considered to assess the condition of the insulation. From the investigations performed on new and aged samples, it is shown that poles (P) can be regarded as insulation aging indicator. It is also shown that a per unit value based on the Dielectric Dissipation Factor (DDF), measured in the frequency range from 1 to 1000 Hz can be correlated to moisture content in the insulation paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.