Tempisque (Sideroxylon capiri Pittier) is classified as a threatened species and has been reported with a high content of phenols and flavonoids in the leaves. The use of abiotic elicitors such as radiation has been reported due to the changes it produces in the metabolism of plants by activating their defense mechanisms and increasing the biosynthesis of bioactive compounds with antioxidant capacity such as phenols and flavonoids. Therefore, the aim of this work was to evaluate the effect of UV-B radiation on growth parameters and the synthesis of bioactive compounds in in vitro culture of tempisque callus. For the callus induction, we used thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) at 0, 0.5 and 1 mg/L. Calluses were exposed to UV-B radiation (0, 1, 2, 3 and 4 h/day) for two and four weeks. The highest callus formation index was obtained with TDZ and 2,4-D at 1 mg/mL. The greatest increase in the concentration of phenols and flavonoids was detected in the fourth week with 4 h of exposure per day. The highest concentrations of quercetin (230 µg/g dry weight), kaempferol (235 µg/g dry weight) and gallic acid (240 µg/g dry weight) were found in callus obtained from leaves explants.
Microalgal biomass has the capacity to accumulate relatively large quantities of triacylglycerides (TAG) for the conversion of methyl esters of fatty acids (FAME) which has made microalgae a desirable alternative for the production of biofuels. In the present work Verrucodesmus verrucosus was evaluated under autotrophic growth conditions as a suitable source of oil for biodiesel production. For this purpose BG11 media were evaluated in three different light:dark photoperiods (L:D; 16:08; 12:12; 24:0) and light intensities (1000, 2000 and 3000 Lux) in a photobioreactor with a capacity of three liters; the evaluation of the microalgal biomass was carried out through the cell count with the use of the Neubauer chamber followed by the evaluation of the kinetic growth parameters. So, the lipid accumulation was determined through the lipid extraction with a Soxhlet system. Finally, the fatty acid profile of the total pooled lipids was determined using gas chromatography-mass spectroscopy (GC-MS). The results demonstrate that the best conditions are a photoperiod of 12 light hours and 12 dark hours with BG11 medium in a 3 L tubular photobioreactor with 0.3% CO2, 25 °C and 2000 Lux, allowing a lipid accumulation of 50.42%. Palmitic acid is identified as the most abundant fatty acid at 44.90%.
Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentos (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil and sediments)
The improvement of the symbiosis generated by arbuscular mycorrhizal fungi (AMF) against pathogenic microorganisms has been described, however, the ef fect of AMF in peanut crops is of interest due to the value of the productive chain that has not been fully attended. Therefore, this research work evaluated six treatments: (T1) Control plants without AMF, (T2) Plants with vermicompost leachate, (T3) Plants inoculated with commercial mycorrhizae, (T4) Plants inoculated with native mycorrhizae, (T5) Plants inoculated with commercial mycorrhizae + leachate and (T6) Plants inoculated with commercial mycorrhizae + native mycorrhizae; in this sense, mycorrhizal fungi were isolated, identifying Rhizoglomus clarum, Acaulospora alpina and Acaulospora af f. bireticulata, and inoculated in peanut plants in an area of 144 m2 in the open, so that, to corroborate the incidence of the treatments evaluated, agronomic variables such as height, width of biomass, foliar damage by Cercospora personata, number of f lowers, were evaluated during the pre-harvest every 15 days and the post-harvest variables were; leaf area index, root length, fruit and lipid yield, as well as the prof ile of fatty acids present in the fruit. Finally, peanut quality was evaluated according to CODEX STAN 200-1995, showing that the best treatment was leaching + commercial mycorrhizae, reporting yields of 65.05% of fruits and 58% of total lipids, mostly monounsaturated fatty acids (52 % oleic acid) followed by polyunsaturated (21% linoleic acid), f inally according to CODEX STAN 200-199 the peanuts obtained correspond to the basic quality with dimensions of 4 to 4.5 cm wide and long respectively, these peanuts cannot be exported but they can be marketed in the country for agro-industrial transformation, allowing improved agricultural practices by reducing the use of agrochemicals.
The use of phytonanoparticles in agriculture could decrease the use of fertilizers and therefore decrease soil contamination, due to their size being better assimilated in plants. It is important to mention that the nanofertilizer is slow-releasing and improves plant physiological properties and various nutritional parameters. The influence of soil and foliar applications of phytonanoparticles of ZnO with the Moringa oleifera extract under three concentrations (25, 50, and 100 ppm) was evaluated on the cherry tomato crop (Solanum lycopersicum L.). Synthesis of the phytonanoparticles was analyzed with ultraviolet-visible spectroscopy (UV-Vis) and infrared transmission spectroscopy with Fourier transform (FT-IR), as well as the analysis with the dynamic light scattering (DLS) technique. The morphometric parameters were evaluated before and after the application of the nanoparticles. The minerals’ content of fruits was done 95 days after planting. Results showed that soil application was better at a concentration of 25 ppm of phytonanoparticles since it allowed the greatest number of flowers and fruits on the plant; however, it was demonstrated that when performing a foliar application, the fruit showed the highest concentrations for the elements Mg, Ca, and Na at concentrations of 511, 4589, and 223 mg kg−1, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.