Objective:High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety. We investigated the effects of l-phenylalanine (L-Phe) on food intake and glucose homeostasis in rodents.Methods:We investigated the effects of the aromatic amino-acid and calcium-sensing receptor (CaSR) agonist l-phenylalanine (L-Phe) on food intake and the release of the gastrointestinal (GI) hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and ghrelin in rodents, and the role of the CaSR in mediating these effects in vitro and in vivo. We also examined the effect of oral l-Phe administration on glucose tolerance in rats.Results:Oral administration of l-Phe acutely reduced food intake in rats and mice, and chronically reduced food intake and body weight in diet-induced obese mice. Ileal l-Phe also reduced food intake in rats. l-Phe stimulated GLP-1 and PYY release, and reduced plasma ghrelin, and also stimulated insulin release and improved glucose tolerance in rats. Pharmacological blockade of the CaSR attenuated the anorectic effect of intra-ileal l-Phe in rats, and l-Phe-induced GLP-1 release from STC-1 and primary L cells was attenuated by CaSR blockade.Conclusions:l-Phe reduced food intake, stimulated GLP-1 and PYY release, and reduced plasma ghrelin in rodents. Our data provide evidence that the anorectic effects of l-Phe are mediated via the CaSR, and suggest that l-Phe and the CaSR system in the GI tract may have therapeutic utility in the treatment of obesity and diabetes. Further work is required to determine the physiological role of the CaSR in protein sensing in the gut, and the role of this system in humans.
Renal fibrosis is a main cause of end-stage renal disease. Clinically, there is no beneficial treatment that can effectively reverse the progressive loss of renal function. We recently synthesized a novel proteolysis-resistant cyclic helix B peptide (CHBP) that exhibits promising renoprotective effects. In this study, we evaluated the effect of CHBP on renal fibrosis in an in vivo ischemia reperfusion injury (IRI) model and in vitro TGF-β-stimulated tubular epithelial cells (TCMK-1 and HK-2) model. In the IRI in vivo model, mice were randomly divided into sham (sham operation), IR and IR + CHBP groups (n = 6). CHBP (8 nmol/kg) was administered intraperitoneally at the onset of reperfusion, and renal fibrosis was evaluated at 12 weeks post-reperfusion. Our results showed that CHBP markedly attenuated the IRI-induced deposition of collagen I and vimentin. In the in vitro model, CHBP reversed the TGF-β-induced down-regulation of E-cadherin and up-regulation of α-SMA and vimentin. Furthermore, CHBP inhibited the phosphorylation of Akt and Forkhead box O 3a (FoxO3a), whose anti-fibrotic effect could be reversed by the 3-phosphoinositide-dependent kinase-1 (PI3K) inhibitor wortmannin as well as FoxO3a siRNA. These findings demonstrate that CHBP attenuates renal fibrosis and the epithelial-mesenchymal transition of tubular cells, possibly through suppression of the PI3K/Akt pathway and thereby the inhibition FoxO3a activity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0699-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.