Silicon nanowire field-effect transistors (Si-NW FETs) have been demonstrated as a versatile class of potentiometric nanobiosensors for real time, label-free, and highly sensitive detection of a wide range of biomolecules. In this review, we summarize the principles of such devices and recent developments in device fabrication, fluid integration, surface functionalization, and biosensing applications. The main focus of this review is on CMOS compatible Si-NW FET nanobiosensors.
Gold nanorods are excellent anisotropic building blocks for plasmonic chiral nanostructures. The near-infrared plasmonic band of nanorods makes them highly desirable for biomedical applications such as chiral bioimaging and sensing, in which a strong circular dichroism (CD) signal is required. Chiral assemblies of gold nanorods induced by self-associating peptides are especially attractive for this purpose as they exhibit plasmonic-enhanced chiroptical activity. Here, we showed that the presence of cetyltrimethylammonium bromide (CTAB) micelles in a gold nanorod solution promoted the self-association of l-/d-glutathione (GSH) and significantly enhanced the chirality of the resulting plasmonic nanochains. Chiroptical signals for the ensemble in the presence of CTAB micelles were 20 times greater than those obtained below the critical micelle concentration of CTAB. The strong optical activity was attributed to the formation of helical GSH oligomers in the hydrophobic core of the CTAB micelles. The helical GSH oligomers led the nanorods to assemble in a chiral, end-to-end crossed fashion. The CD signal intensities were also proportional to the fraction of nanorods in the nanochains. In addition, finite-difference time-domain simulations agreed well with the experimental extinction and CD spectra. Our work demonstrated a substantial effect from the CTAB micelles on gold nanoparticle assemblies induced by biomolecules and showed the importance of size matching between the inorganic nanobuilding blocks and the chiral molecular templates (i.e., the GSH oligomers in the present case) in order to attain strong chiroptical activities.
Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.
This paper describes the detection of volatile organic compounds (VOCs) using an e-nose type integrated microfabricated sensor array, in which each resonator is coated with different supramolecular monolayers: p-tert-butyl calix[8]arene (Calix[8]arene), 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (Porphyrin), β-cyclodextrin (β-CD), and cucurbit[8]uril (CB[8]). Supramolecular monolayers fabricated by Langmuir-Blodgett techniques work as specific sensing interface for different VOCs recognition which increase the sensor selectivity. Microfabricated ultrahigh working frequency film bulk acoustic resonator (FBAR) transducers (4.4 GHz) enable their high sensitivity toward monolayer gas sensing which facilitate the analyses of VOCs adsorption isotherms and kinetics. Two affinity constants (K1, K2) are obtained for each VOC, which indicate the gas molecule adsorption happen inside and outside of the supramolecular cavities. Additional kinetic information on adsorption and desorption rate constants (ka, kd) are obtained as well from exponential fitting results. The five parameters, one from the conventional frequency shift signals of mass transducers and the other four from the indirect analyses of monolayer adsorption behaviors, thus enrich the sensing matrix (Δf, K1, K2, ka, kd) which can be used as multiparameter fingerprint patterns for highly selective detection and discrimination of VOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.