The SnSe crystal is a promising candidate in the field of thermoelectric materials. In order to elucidate basic physics in the SnSe system, here we report the heavily hole doping SnSe single crystals by the flux method (using alkali halide as solvent). Compared to bad-metal behavior of SnSe grown by the Bridgeman method, the flux-grown SnSe crystals show the metallic conductive behavior consistent with the Landau Fermi liquid (resistivity ρ ∼ T2) with temperatures ranging from 2 to 300 K. Combined angle-resolved photoemission spectroscopy and empirical Landau Fermi liquid theory, screening lengths λ of Coulomb electron–electron interaction U of SnSe grown by the flux method are 6.6 Å and 6.1 eV, which are much higher than those of normal metals. Remarkably, the excellent electrical conductivity (870 S/cm) of the SnSe crystal grown by the flux method at room temperature is attributed to the higher hole concentration (∼3.8 × 1019 cm−3) and large mobility (152.2 cm2 V−1 s−1). Meanwhile, these SnSe crystals still have large Seebeck coefficients (∼190 μV/K). Thus, the SnSe crystals grown by the flux method have an ultrahigh power factor [∼31.5 μW/(cm K2)] at room temperature, which is ten times larger than that of SnSe crystals grown by the Bridgeman method and as best as currently reported results. Our work shows a method for growing heavily hole-doped SnSe crystals, which provides a platform for understanding the electrical properties and improving its thermoelectric performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.