Agglomeration-triggered deactivation of supported platinum electrocatalysts markedly hinders their application in methanol oxidation reaction (MOR). In this study, graphene-supported nickel–iron layered double hydroxide (NiFe-LDH/rGO), in which Fe3+ was introduced to replace Ni2+ partially in the Ni(OH)2 lattice to provide stronger metal–support bonding sites, was utilized to immobilize Pt nanoparticles (NPs). Given the optimized metal–support interfacial contact (Fe3+-O(H)-Pt) between Pt NPs and NiFe-LDH/rGO nanosheets for Pt/NiFe-LDH/rGO electrocatalysts, the Pt/NiFe-LDH/rGO electrocatalysts displayed dramatically enhanced durability than that of Pt/Ni(OH)2/rGO counterpart as well as commercial Pt/C, and 86.5% of its initial catalytic activity can be maintained even after 1200 cycles of cyclic voltammetry (CV) tests during MOR. First-principle calculations toward the resultant M-O(H)-Pt (M = Fe3+, Ni2+) interfacial structure further corroborates that the NiFe-LDH nanosheets can provide stronger bonding sites (via the Fe3+-O(H)-Pt bonds) to immobilize Pt NPs than those of Ni(OH)2 nanosheets (via the Ni2+-O(H)-Pt bonds).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.