Hybrid and end-to-end (E2E) systems have their individual advantages, with different error patterns in the speech recognition results. By jointly modeling audio and text, the E2E model performs better in matched scenarios and scales well with a large amount of paired audio-text training data. The modularized hybrid model is easier for customization, and better to make use of a massive amount of unpaired text data. This paper proposes a two-pass hybrid and E2E cascading (HEC) framework to combine the hybrid and E2E model in order to take advantage of both sides, with hybrid in the first pass and E2E in the second pass. We show that the proposed system achieves 8-10% relative word error rate reduction with respect to each individual system. More importantly, compared with the pure E2E system, we show the proposed system has the potential to keep the advantages of hybrid system, e.g., customization and segmentation capabilities. We also show the second pass E2E model in HEC is robust with respect to the change in the first pass hybrid model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.