A label free, reagentless aptasensor for adenosine is developed on an ISFET device. The separation of an aptamer/nucleic acid duplex by adenosine leads to the aptamer/adenosine complex that alters the gate potential of the ISFET. The sensitivity limit of the device is 5 x 10-5 M. Also, the immobilization of the aptamer/nucleic acid duplex on an Au-electrode and the separation of the duplex by adenosine mono-phosphate (AMP) enable the electrochemical detection of adenosine by faradaic impedance spectroscopy. The separation of the aptamer/nucleic acid duplex by adenosine and the formation of the aptamer/adenosine complex results in a decrease in the interfacial electron-transfer resistance in the presence of [Fe(CN)6]3-/4- as redox active substrate.
Chiral inorganic materials predated life on Earth, and their enantiospecific surface chemistry may have played a role in the origins of biomolecular homochirality. However, enantiospecific differences in the interaction energies of chiral molecules with chiral surfaces are small and typically lead to modest enantioselectivities in adsorption, catalysis, and chemistry on chiral surfaces. To yield high enantioselectivities, small energy differences must be amplified by reaction mechanisms such as autocatalytic surface explosions which have nonlinear kinetics. Herein, we report the first observations of superenantiospecificity resulting from an autocatalytic surface explosion reaction of a chiral molecule on a naturally chiral surface. R,R- and S,S-tartaric acid decompose via a vacancy-mediated surface explosion mechanism on Cu single crystal surfaces. When coupled with surface chirality, this leads to decomposition rates that exhibit extraordinarily high enantiospecificity. On the enantiomorphs of naturally chiral Cu(643)(R&S), Cu(17,5,1)(R&S), Cu(531)(R&S) and Cu(651)(R&S) single crystal surfaces, R,R- and S,S-tartaric acid exhibit enantiospecific decomposition rates that differ by as much as 2 orders of magnitude, despite the fact that the effective rates constants for decomposition differ by less than a factor of 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.