Tuberculous spondylitis often develops catastrophic bone destruction with uncontrolled inflammation. Because anti-tuberculous drugs do not have a role in bone formation, a combination drug therapy with a bone anabolic agent could help fracture prevention and promote bone reconstruction. This study aimed to investigate the influence of teriparatide on the effect of anti-tuberculous drugs in tuberculous spondylitis treatment. We used the virulent Mycobacterium tuberculosis (Mtb) H37Rv strain. First, we investigated the interaction between teriparatide and anti-tuberculosis drugs (isoniazid and rifampin) by measuring the minimal inhibitory concentration (MIC) against H37Rv. Second, we evaluated the therapeutic effect of anti-tuberculosis drugs and teriparatide on our previously developed in vitro tuberculous spondylitis model of an Mtb-infected MG-63 osteoblastic cell line using acid-fast bacilli staining and colony-forming unit counts. Selected chemokines (interleukin [IL]-8, interferon γ-induced protein 10 kDa [IP-10], monocyte chemoattractant protein [MCP]-1, and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]) and osteoblast proliferation (alkaline phosphatase [ALP and alizarin red S [ARS] staining) were measured. Teriparatide did not affect the MIC of isoniazid and rifampin. In the Mtb-infected MG-63 spondylitis model, isoniazid and rifampin treatment significantly reduced Mtb growth, and cotreatment with teriparatide did not change the anti-tuberculosis effect of isoniazid (INH) and rifampin (RFP). IP-10 and RANTES levels were significantly increased by Mtb infection, whereas teriparatide did not affect all chemokine levels as inflammatory markers. ALP and ARS staining indicated that teriparatide promoted osteoblastic function even with Mtb infection. Cotreatment with teriparatide and the anti-tuberculosis drugs activated bone formation (ALP-positive area increased by 705%, P = 0.0031). Teriparatide was effective against Mtb-infected MG63 cells without the anti-tuberculosis drugs (ARS-positive area increased by 326%, P = 0.0037). Teriparatide had no effect on the efficacy of anti-tuberculosis drugs and no adverse effect on the activity of Mtb infection in osteoblasts. Furthermore, regulation of representative osteoblastic inflammatory chemokines was not changed by teriparatide treatment. In the in vitro Mtb-infected MG-63 cell model of tuberculous spondylitis, cotreatment with the anti-tuberculosis drugs and teriparatide increased osteoblastic function.
Tuberculous spondylitis often develops catastrophic bone destruction with uncontrolled inflammation. Because anti-tuberculous drugs do not have a role in bone formation, a combination drug therapy with a bone anabolic agent could help in fracture prevention and promote bone reconstruction. This study aimed to investigate the influence of teriparatide on the effect of anti-tuberculous drugs in tuberculous spondylitis treatment. We used the virulent Mycobacterium tuberculosis (Mtb) H37Rv strain. First, we investigated the interaction between teriparatide and anti-tuberculosis drugs (isoniazid and rifampin) by measuring the minimal inhibitory concentration (MIC) against H37Rv. Second, we evaluated the therapeutic effect of anti-tuberculosis drugs and teriparatide on our previously developed in vitro tuberculous spondylitis model of an Mtb-infected MG-63 osteoblastic cell line using acid-fast bacilli staining and colony-forming unit counts. Selected chemokines (interleukin [IL]-8, interferon γ-induced protein 10 kDa [IP-10], monocyte chemoattractant protein [MCP]-1, and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]) and osteoblast proliferation (alkaline phosphatase [ALP] and alizarin red S [ARS] staining) were measured. Teriparatide did not affect the MIC of isoniazid and rifampin. In the Mtb-infected MG-63 spondylitis model, isoniazid and rifampin treatment significantly reduced Mtb growth, and cotreatment with teriparatide did not change the anti-tuberculosis effect of isoniazid (INH) and rifampin (RFP). IP-10 and RANTES levels were significantly increased by Mtb infection, whereas teriparatide did not affect all chemokine levels as inflammatory markers. ALP and ARS staining indicated that teriparatide promoted osteoblastic function even with Mtb infection. Cotreatment with teriparatide and the anti-tuberculosis drugs activated bone formation (ALP-positive area increased by 705%, P = 0.0031). Teriparatide was effective against Mtb-infected MG63 cells without the anti-tuberculosis drugs (ARS-positive area increased by 326%, P = 0.0037). Teriparatide had no effect on the efficacy of anti-tuberculosis drugs and no adverse effect on the activity of Mtb infection in osteoblasts. Furthermore, regulation of representative osteoblastic inflammatory chemokines was not changed by teriparatide treatment. In the in vitro Mtb-infected MG-63 cell model of tuberculous spondylitis, cotreatment with the anti-tuberculosis drugs and teriparatide increased osteoblastic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.