It is essential to solve the problem of phosphorus pollution in urban landscape water and reduce the degree of eutrophication. In this paper, lanthanum-modified bentonite (La-B) was prepared by high-temperature calcination and liquid-phase precipitation. Then La-B was modified with chitosan to prepare a low-cost environment-friendly functional material: Lanthanum/Chitosan Co-Modified Bentonite (La-BC). It can reach the adsorption equilibrium within 30 min, and the maximum adsorption capacity is 15.5 mg/g (initial phosphate concentration 50 mg/L); when the target concentration is 2 mg/L, the removal rate can reach 98.5%. La-BC has a stronger anti-interference ability to common coexisting anions SO42−, HCO3−, NO3− and Cl− in the urban landscape water body. La-BC has excellent performance in weakly acidic to neutral water, and its pH applicable range has been improved, making it possible to apply in practical water. The fitting results show that the adsorption behavior conforms to the pseudo-second-order kinetic model and the Freundlich model. After 5 regenerations, the removal efficiency remained around 80%. In the actual water test results, the phosphate concentration can be controlled below 0.1 mg/L and the removal rate is above 75%. Due to its low cost and reusability, it has great potential in the practical application of phosphate removal from landscape water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.