Using Jacobi elliptic function linear superposition approach for the (1+1)-dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation and the (2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) equation, many new periodic travelling wave solutions with different periods and velocities are obtained based on the known periodic solutions. This procedure is crucially dependent on a sequence of cyclic identities involving Jacobi elliptic functions sn(), cn(), and dn().
By applying Lou's direct perturbation method to perturbed nonlinear Schrödinger equation and the critical nonlinear Schrödinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schrödinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.
The generalized coupled Korteweg-de Vries (GCKdV) equations as one case of the four-reduction of the Kadomtsev-Petviashvili (KP) hierarchy are studied in details. The Painlevé properties of the model are proved by using the standard Weiss-Tabor-Carnevale (WTC) method, invariant, and perturbative Painlevé approaches. The meaning of the negative index k = −2 is shown, which is indistinguishable from the index k = −1. Using the standard and nonstandard Painlevé truncation methods and the Jacobi elliptic function expansion approach, some types of new exact solutions are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.