Polyethylene is widely used as an agricultural film, but eco-friendly technology is lacking for its decomposition. Thus, recently, much attention has been paid to develop a technology for biological polyethylene decomposition. It has been expected that several oxidation steps will be required in the biological degradation of polyethylene. First, secondary alcohol is formed on the polyethylene chain, and then the alcohol is oxidized to a carbonyl group. In the subsequent process, the carbonyl group is converted to an ester by Baeyer-Villiger monooxygenase (BVMO), and this ester bond is expected to be cleaved by lipase and esterase in the final step. In this work, we reviewed BVMO as one of the promising enzymes for polyethylene decomposition, in terms of its reaction mechanism, classification, and engineering. In addition, we also give a brief perspective on polyethylene decomposition using BVMO.
ATPase, a key enzyme involved in energy metabolism, has not yet been well studied in Clostridium acetobutylicum. Here, we knocked down the atpG gene encoding the ATPase gamma subunit in C. acetobutylicum ATCC 824 using a mobile group II intron system and analyzed the physiological characteristics of the atpG gene knockdown mutant, 824-2866KD. Properties investigated included cell growth, glucose consumption, production of major metabolites, and extracellular pH. Interestingly, in 2-L batch fermentations, 824-2866KD showed no significant difference in metabolite biosynthesis or cell growth compared with the parent ATCC 824. However, the pH value in 824-2866KD cultures at the late stage of the solventogenic phase was abnormally high (pH 6.12), compared with that obtained routinely in the culture of ATCC 824 (pH 5.74). This phenomenon was also observed in batch cultures of another C. acetobutylicum, BEKW-2866KD, an atpG-knockdown and pta-buk double-knockout mutant. The findings reported in this study suggested that ATPase is relatively minor than acid-forming pathway in ATP metabolism in C. acetobutylicum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.