Wee1 is a member of the Serine/Threonine protein kinase family and is a key regulator of cell cycle progression. It has been known that WEE1 is highly expressed and has oncogenic functions in various cancers, but it is not yet studied in gastric cancers. In this study, we investigated the oncogenic role and therapeutic potency of targeting WEE1 in gastric cancer. At first, higher expression levels of WEE1 with lower survival probability were determined in stage 4 gastric cancer patients or male patients with accompanied lymph node metastasis. To determine the function of WEE1 in gastric cancer cells, we determined that WEE1 ablation decreased the proliferation, migration, and invasion, while overexpression of WEE1 increased these effects in gastric cancer cells. We also validated the clinical application of WEE1 targeting by a small molecule, AZD1775 (MK-1775), which is a WEE1 specific inhibitor undergoing clinical trials. AZD1775 significantly inhibited cell proliferation and induced apoptosis and cell cycle arrest in gastric cancer cells, which was more effective in WEE1 high-expressing gastric cancer cells. Moreover, we performed combination treatments with AZD1775 and anti-cancer agents, 5- fluorouracil or Paclitaxel in gastric cancer cells and in gastric cancer orthotopic-transplanted mice to maximize the therapeutic effect and safety of AZD1775. The combination treatments dramatically inhibited the proliferation of gastric cancer cells and tumor burdens in stomach orthotopic-transplanted mice. Taken together, we propose that WEE1 is over-expressed and could enhance gastric cancer cell proliferation and metastasis. Therefore, we suggest that WEE1 is a potent target for gastric cancer therapy.
SLC30A8 encodes the b-cell-specific zinc transporter-8 (ZnT-8) expressed in insulin secretory granules. The single-nucleotide polymorphism rs13266634 of SLC30A8 is associated with susceptibility to post-transplantation diabetes mellitus (PTDM). We tested the hypothesis that the polymorphic residue at position 325 of ZnT-8 determines the susceptibility to cyclosporin A (CsA) suppression of insulin secretion. INS (insulinoma)-1E cells expressing the W325 variant showed enhanced glucose-stimulated insulin secretion (GSIS) and were less sensitive to CsA suppression of GSIS. A reduced number of insulin granule fusion events accompanied the decrease in insulin secretion in CsA-treated cells expressing ZnT-8 R325; however, ZnT-8 W325-expressing cells exhibited resistance to the dampening of insulin granule fusion by CsA, and transported zinc ions into secretory vesicles more efficiently. Both tacrolimus and rapamycin caused similar suppression of GSIS in cells expressing ZnT-8 R325. However, cells expressing ZnT-8 W325 were resistant to tacrolimus, but not to rapamycin. The Down's syndrome candidate region-1 (DSCR1), an endogenous calcineurin inhibitor, overexpression and subsequent calcineurin inhibition significantly reduced GSIS in cells expressing the R325 but not the W325 variant, suggesting that differing susceptibility to CsA may be due to different interactions with calcineurin. These data suggest that the ZnT-8 W325 variant is protective against CsA-induced suppression of insulin secretion. Tolerance of ZnT-8 W325 to calcineurin activity may account for its protective effect in PTDM.
Purpose: We aimed to confirm the effects of virtual reality programs used for patients with diabetes on reducing blood glucose levels and improving physical function.Methods: In this systematic literature review and meta-analysis, literature was collected from various databases for randomized controlled trials published in Korean, Chinese, and English by May 2021. The search yielded 1,243 studies. Eight studies were selected for the systematic literature review, and six studies were included in the meta-analysis.Results: In the eight selected studies, a non-immersive virtual reality programs were employed as the intervention method. The effect size of the virtual reality programs on glycated hemoglobin (HbA1c) was -0.40, with no significant difference between experimental and control groups. The effect size on static balancing ability was 1.04, and the effect size on dynamic balancing ability was 2.39. The effect size on falls efficacy was 0.69, and all functional outcomes differed significantly between the experimental and control groups (<i>p</i><.05). A subgroup analysis of static balancing ability was performed according to the duration of the interventional virtual reality program. When the virtual reality programs lasting for more than six weeks, shows an effect size of 1.27 for static balance ability, which was statistically significant (Z=3.32, <i>p</i><.001).Conclusion: Virtual reality programs for participants with diabetes did not reduce HbA1c, but improved balance ability and falls prevention efficacy. The virtual reality program is an effective method for diabetics to be interested and consistently self-care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.