The inhibitory receptor signal regulatory protein-α (Sirpα) is a myeloid-specific immune checkpoint that engages the "don't eat me" signal CD47, which is expressed on tumor and normal tissue cells. However, the profile and regulatory mechanism of Sirpα expression in tumor-associated macrophages (TAMs) are still not clear. Here, we found that the expression of Sirpα in TAMs increased dynamically with colorectal cancer (CRC) progression. Mechanistically, CRC cell-derived lactate induced the nuclear translocation of the transcription factor Ap-2α from the cytoplasm in TAMs. Ap-2α functioned as a transcription factor for Elk-1 by binding to the conserved element GCCTGC located at −1396/−1391 in the mouse Elk-1 promoter. Subsequently, the Elk-1 protein bound to two conserved sites, CTTCCTACA (located at −229/−221) and CTTCCTCTC (located at −190/−182), in the mouse Sirpα promoter and promoted Sirpα expression in TAMs. Functionally, the macrophage-specific knockout of Ap-2α notably promoted the phagocytic activity of TAMs and suppressed CRC progression, whereas these effects were prevented by the transgenic macrophage-specific expression of Elk-1, which regulated TAM phagocytosis and CRC development in a Sirpα-dependent manner. Furthermore, we showed that Elk-1 expression was positively correlated with Sirpα expression in TAMs and was associated with poor survival in CRC patients. Taken together, our findings revealed a novel mechanism through which CRC evades innate immune surveillance and provided potential targets for macrophage-based immunotherapy for CRC patients.Signal Transduction and Targeted Therapy (2020) 5:35; https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.