The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1 ) and triplet (T1 ) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1 →S1 ) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics.
The control of the emission properties of synthetic organic molecules through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colours, high quantum efficiencies and efficient energy/charge transfer processes. However, the task of generating excited states with long lifetimes has been met with limited success, owing to the ultrafast deactivation of the highly active excited states. Here, we present a design rule that can be used to tune the emission lifetime of a wide range of luminescent organic molecules, based on effective stabilization of triplet excited states through strong coupling in H-aggregated molecules. Our experimental data revealed that luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores, can be realized under ambient conditions. These results outline a fundamental principle to design organic molecules with extended lifetimes of excited states, providing a major step forward in expanding the scope of organic phosphorescence applications.
Morphology control is critical to achieve high efficiency CH3NH3PbI3 perovskite solar cells (PSC). The surface properties of the substrates on which crystalline perovskite thin films form are expected to affect greatly the crystallization and, thus, the resulting morphology. However, this topic is seldom examined in PSC. Here we developed a facile but efficient method of modifying the ZnO-coated substrates with 3-aminopropanioc acid (C3-SAM) to direct the crystalline evolution and achieve the optimal morphology of CH3NH3PbI3 perovskite film. With incorporation of the C3-SAM, highly crystalline CH3NH3PbI3 films were formed with reduced pin-holes and trap states density. In addition, the work function of the cathode was better aligned with the conduction band minimum of perovskite for efficient charge extraction and electronic coupling. As a result, the PSC performance remarkably increased from 9.81(±0.99)% (best 11.96%) to 14.25(±0.61)% (best 15.67%). We stress the importance of morphology control through substrate surface modification to obtain the optimal morphology and device performance of PSC, which should generate an impact on developing highly efficient PSC and future commercialization.
Afterglow or persistent luminescence eliminates the need for light excitation and thus circumvents the issue of autofluorescence, holding promise for molecular imaging. However, current persistent luminescence agents are rare and limited to inorganic nanoparticles. This study reports the design principle, synthesis, and proof-of-concept application of organic semiconducting nanoparticles (OSNs) with ultralong phosphorescence for in vivo afterglow imaging. The design principle leverages the formation of aggregates through a top-down nanoparticle formulation to greatly stabilize the triplet excited states of a phosphorescent molecule. This prolongs the particle luminesce to the timescale that can be detected by the commercial whole-animal imaging system after removal of external light source. Such ultralong phosphorescent of OSNs is inert to oxygen and can be repeatedly activated, permitting imaging of lymph nodes in living mice with a high signal-to-noise ratio. This study not only introduces the first category of water-soluble ultralong phosphorescence organic nanoparticles but also reveals a universal design principle to prolong the lifetime of phosphorescent molecules to the level that can be effective for molecular imaging.
The design and characterization of purely organic room‐temperature phosphorescent (RTP) materials for optoelectronic applications is currently the focus of research in the field of organic electronics. Particularly, with the merits of preparation controllability and modulation flexibility, host–guest material systems are encouraging candidates that can prepare high‐performance RTP materials. By regulating the interaction between host and guest molecules, it can effectively control the quantum efficiency, luminescent lifetime, and color of host–guest RTP materials, and even produce RTP emission with stimuli‐responsive features, holding tremendous potential in diverse applications such as encryption and anti‐counterfeiting, organic light‐emitting diodes, sensing, optical recording, etc. Here a roundup of rapid achievement in construction strategies, molecule systems, and diversity of applications of host–guest material systems is outlined. Intrinsic correlations between the molecular properties and a survey of recent significant advances in the development of host–guest RTP materials divided into three systems including rigid matrix, exciplex, and sensitization are presented. Providing an insightful understanding of host–guest RTP materials and offering a promising platform for high throughput screening of RTP systems with inherent advantages of simple material preparation, low‐cost, versatile resource, and controllably modulated properties for a wide range of applications is intended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.