Fabrication of honeycomb patterned films from our synthesized amphiphilic dendronized block copolymer by "on-solid surface spreading" method and "on-water spreading" method was reported for the first time in this paper. The comparison of the two methods indicated honeycomb-patterned films with smaller size, and larger surface density of micropores can be fabricated by spreading on water but with lower regular arrangement. Furthermore, several influencing factors on the formation of the honeycomb structure and the different morphologies, such as the concentration of the copolymer solution and the relative humidity in the atmosphere and the substrates, were investigated. The results showed that comparably high relative humidity from 80% to 95% was needed, and the mica plate as a spreading substrate was suitable to form orderly porous films for such a copolymer. The best ordered pattern could be formed from the copolymer with concentration of 1.00 mg/mL at the relative humidity of 85% using a mica plate. Besides, strong periodicity, regularity, and a large, defect-free area were notable, which made this structure extremely interesting for applications for templated molecular objects formed via intramolecular metal or metal oxide synthesis.
Novel thermosensitive polymer vesicles with controlled temperature-responsive phase transition at the lower critical solution temperature (LCST) varying from 8 to 81 degrees C were prepared via self-assembly of amphiphilic hyperbranched star copolymers having a hydrophobic hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane] (HBPO) core and many hydrophilic polyethylene oxide (PEO) arms. Real-time optical microscopic observation revealed that the polymer vesicles have undergone sequential morphology changes including enrichment, aggregation, fusion, and vesicle-to-membrane transformation near the LCST. Molecular-level investigation indicates that the LCST transition results from the decreasing water solubility of the polymer vesicles with increasing temperature based on the partial dehydration of the PEO vesicle corona. On the basis of these results, a LCST transition mechanism, in view of the molecular configuration, balance of hydrophilic and hydrophobic moieties, and the vesicle morphology transformations, was proposed. As far as we know, the work presented here is the first demonstration of thermosensitive vesicles based on PEO, and the finding may be useful to design the thermosensitive core-shell structures by introducing the PEO segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.