The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms.
The aim of this study is to establish a new method with high sensitivity, accuracy, and stability for the determination of human IgG and then expand it to analyze severe acute respiratory syndrome corona virus 2 (SARS-CoV-2)-specific IgM and IgG, which is of great significance for the screening and diagnosis of COVID-19. In this study, the magnetic Fe 3 O 4 nanospheres coupled with mouse antihuman IgG (Ab1 IgG ) were used as an immune capture probe (Fe 3 O 4 @Ab1 IgG ) to capture and separate the target, and rabbit antihuman IgG (Ab2 IgG ) coupled with highly luminescent quantum dot nanobeads (QBs) as a fluorescence detection probe (QBs@Ab2 IgG ) was used to realize high sensitivity detection. After the formation of a sandwich immunocomplex, the fluorescence intensity of the precipitate after magnetic separation was measured at the excitation wavelength of 370 nm. Under optimal conditions, a wide linear range varying from 0.005 to 40 ng·mL –1 was obtained for the detection of human IgG with a lower limit of detection at 4 pg·mL –1 (S/N = 3). The recoveries of intra- and interassays were 90.0–101.9 and 96.0–106.6%, respectively, and the relative standard deviations were 6.3–10.2 and 2.6–10.5%, respectively. Furthermore, the proposed method was successfully demonstrated to detect human IgG in serum samples, and the detection results were not statistically different ( P > 0.05) from commercial enzyme-linked immunosorbent assay kits. This method is sensitive, fast, and accurate, which could be expanded to detect the specific IgM and IgG antibodies against SARS-CoV-2.
We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.