It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity.
In animals, the tetraspanins are a large superfamily of membrane proteins that play important roles in organizing various cell-cell and matrix-cell interactions and signal pathways based on such interactions. However, their origin and evolution largely remain elusive and most of the family's members are functionally unknown or less known due to difficulties of study, such as functional redundancy. In this study, we rebuilt the family's phylogeny with sequences retrieved from online databases and our cDNA library of amphioxus. We reveal that, in addition to in metazoans, various tetraspanins are extensively expressed in protozoan amoebae, fungi, and plants. We also discuss the structural evolution of tetraspanin's major extracellular domain and the relation between tetraspanin's duplication and functional redundancy. Finally, we elucidate the coevolution of tetraspanins and eukaryotes and suggest that tetraspanins play important roles in the unicell-to-multicell transition. In short, the study of tetraspanin in a phylogenetic context helps us understand the evolution of intercellular interactions.
To investigate the evolution and immune function of C-type lectin in amphioxus, the primitive representative of the chordate phylum, we identified three C-type lectins consisting solely of a carbohydrate recognition domain and N-terminal signal peptide and found that they had distinct express patterns in special tissues and immune response to stimulations analyzed by quantitative real-time PCR. We characterized the biochemical and biological properties of AmphiCTL1, which was dramatically up-regulated in amphioxus challenged with Staphylococcus aureus, Saccharomyces cerevisiae, and zymosan. Immunohistochemistry demonstrated that the localization of AmphiCTL1 protein was exclusively detected in the inner folding tissues of the hepatic diverticulum. Recombinant AmphiCTL1 was characterized as a typical Ca2+-dependent carbohydrate-binding protein possessing hemagglutinating activity, preferentially bound to all examined four Gram-positive bacteria and two yeast strains, but had little binding activity toward four Gram-negative bacteria we tested. It aggregated S. aureus and S. cerevisiae in a Ca2+-dependent manner and specifically bound to insoluble peptidoglycan and glucan, but not to LPS, lipoteichoic acid, and mannan. Calcium increased the intensity of the interaction between AmphiCTL1 and those components, but was not essential. This lectin directly killed S. aureus and S. cerevisiae in a Ca2+-independent fashion, and its binding to microorganism cell wall polysaccharides such as peptidoglycan and glucan preceded microbial killing activity. These findings suggested that AmphiCTL1 acted as a direct microbial killing C-type lectin through binding microbial targets via interaction with peptidoglycan and glucan. Thus, AmphiCTL1 may be an evolutionarily primitive form of antimicrobial protein involved in lectin-mediated innate immunity.
Rice, being a major staple food crop and sensitive to salinity conditions, bears heavy yield losses due to saline soil. Although some salt responsive genes have been identified in rice, their applications in developing salt tolerant cultivars have resulted in limited achievements. Herein, we used bioinformatic approaches to perform a meta-analysis of three transcriptome datasets from salinity and control conditions in order to reveal novel genes and the molecular pathways underlying rice response to salt. From a total of 28,432 expressed genes, we identify 457 core differentially expressed genes (DEGs) constitutively responding to salt, regardless of the stress duration, genotype, or the tissue. Gene co-expression analysis divided the core DEGs into three different modules, each of them contributing to salt response in a unique metabolic pathway. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key biological processes and metabolic pathways involved in the salt response. We identified important novel hub genes encoding proteins of different families including CAM, DUF630/632, DUF581, CHL27, PP2-13, LEA4-5, and transcription factors, which could be functionally characterized using reverse genetic experiments. This novel repertoire of candidate genes related to salt response in rice will be useful for engineering salt tolerant varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.