Clear cell renal cell carcinoma (ccRCC), the major histopathological subtype of renal cancer, is sensitive to ferroptosis. MIT-domain containing protein 1 (MITD1) has been reported to play an important role in hepatocellular carcinoma, while it remains unclear whether MITD1 is involved in ccRCC. Based on available data in The Cancer Genome Atlas, we found the expression of MITD1 increased through bioinformatics analysis and high MITD1 expression suggests a poor prognosis. And we validated that MITD1 expressed significantly in ccRCC through Western blot analysis. Then, we further compared the proliferation and migration capacity of ccRCC before and after MITD1 knockdown and further explored the effect of MITD1 knockdown on ferroptosis. The results indicated that MITD1 knockdown inhibited ccRCC cell proliferation and migration and induced ferroptosis in ccRCC. Furthermore, we found and analyzed the key molecule TAZ which was involved in ferroptosis caused by MITD1 knockdown. Subsequent overexpression experiments demonstrated that MITD1 knockdown induced ferroptosis and suppressed tumor growth and migration through the TAZ/SLC7A11 pathway. In summary, our study revealed the role of MITD1 in the ferroptosis of ccRCC and provided a novel target for ccRCC treatment.
Energy stress is an unfavorable condition that tumor cells are often exposed to. Ferroptosis is considered an emerging target for tumor therapy. However, the role of ferroptosis in energy stress in renal cancer is currently unknown. In this study, we found that glucose deprivation significantly enhanced GPX4-dependent ferroptosis through AMPK activation. Further, AMPK activation suppressed GPX4 expression at the transcriptional level through the upregulation of P53 expression. Additionally, the inactivation of JAK2/STAT3 transcriptionally promoted P53 expression, thereby promoting AMPK-mediated GPX4-dependent ferroptosis. In conclusion, energy stress promotes AMPK-mediated GPX4-dependent erastin-induced ferroptosis in renal cancer through the JAK2/STAT3/P53 signaling axis.
Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.