This brief is concerned with the robust stability problem for a class of discrete-time uncertain Markovian jumping neural networks with defective statistics of modes transitions. The parameter uncertainties are considered to be norm-bounded, and the stochastic perturbations are described in terms of Brownian motion. Defective statistics means that the transition probabilities of the multimode neural networks are not exactly known, as assumed usually. The scenario is more practical, and such defective transition probabilities comprise three types: known, uncertain, and unknown. By invoking the property of the transition probability matrix and the convexity of uncertain domains, a sufficient stability criterion for the underlying system is derived. Furthermore, a monotonicity is observed concerning the maximum value of a given scalar, which bounds the stochastic perturbation that the system can tolerate as the level of the defectiveness varies. Numerical examples are given to verify the effectiveness of the developed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.