In the past few years, with the continuous breakthrough of technology in various fields, artificial intelligence has been considered as a revolutionary technology. One of the most important and useful applications of artificial intelligence is face detection. The outbreak of COVID-19 has promoted the development of the noncontact identity authentication system. Face detection is also one of the key techniques in this kind of authentication system. However, the current real-time face detection is computationally expensive which hinders the application of face recognition. To address this issue, we propose a face verification framework based on adaptive cascade network and triplet loss. The framework is simple in network architecture and has light-weighted parameters. The training network is made of three stages with an adaptive cascade network and utilizes a novel image pyramid based on scales with different sizes. We train the face verification model and complete the verification within 0.15 second for processing one image which shows the computation efficiency of our proposed framework. In addition, the experimental results also show the competitive accuracy of our proposed framework which is around 98.6%. Using dynamic semihard triplet strategy for training, our network achieves a classification accuracy of 99.2% on the dataset of Labeled Faces in the Wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.