Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Large-pore mesoporous silica nanoparticles (MSN) were prepared and functionalized to serve as a highly robust and biocompatible delivery platform for platinum-acridine (PA) anticancer agents. The material showed a high loading capacity for the dicationic, hydrophilic hybrid agent [PtCl(en)(N-[acridin-9-ylaminoethyl]-N-methylpropionamidine)] dinitrate salt (P1A1) and virtually complete retention of payload at neutral pH in a high-chloride buffer. In acidic media mimicking the pH inside the cell lysosomes, rapid, burst-like release of P1A1 from the nanoparticles is observed. Coating of the materials in phospholipid bilayers resulted in nanoparticles with greatly improved colloidal stability. The lipid and carboxylate-modified nanoparticles containing 40 wt % drug caused S-phase arrest and inhibited cell proliferation in pancreatic cancer cells at submicromolar concentrations similar to carrier-free P1A1. The most striking feature of nanoparticle-delivered P1A1 was that the payload did not escape from the acidified lysosomal vesicles into the cytoplasm, but was shuttled to the nuclear membrane and released into the nucleus.
A three-component drug-delivery system has been developed consisting of multi-walled carbon nanotubes (MWCNTs) coated with a non-classical platinum chemotherapeutic agent ([PtCl(NH3)2(L)]Cl (P3A1; L = N-(2-(acridin-9-ylamino)ethyl)-N-methylproprionimidamide) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (DSPE-mPEG). The optimized P3A1-MWCNTs are colloidally stable in physiological solution and deliver more P3A1 into breast cancer cells than treatment with the free drug. Furthermore, P3A1-MWCNTs are cytotoxic to several cell models of breast cancer and induce S-phase cell cycle arrest and non-apoptotic cell death in breast cancer cells. By contrast, free P3A1 induces apoptosis and allows progression to G2/M phase. Photothermal activation of P3A1-MWCNTs to generate mild hyperthermia potentiates their cytotoxicity. These findings suggest that delivery of P3A1 to cancer cells using MWCNTs as a drug carrier may be beneficial for combination cancer chemotherapy and photothermal therapy.
A range of ketones flanked by a combination of an aromatic and a heterocyclic ring (furan, thiophene, N-methylimidazole) were reduced under asymmetric transfer hydrogenation (ATH) conditions. Using a range of [(arene)Ru(TsDPEN)Cl] precatalysts, including tethered derivatives, the reduction enantioselectivity was high (up to 99 % ee) in cases where the aromatic ring contained an ortho-substituent. The enantioselectivity is influenced by a combination of steric and electronic factors which for the furan and thiophene series, follow literature precedents. In the case of the N-methylimidazole-containing ketones, an unexpected switch in enantioselectivity took place upon variation of the opposing aromatic group. Pyrrole-containing ketones were resistant to reduction. This study demonstrates the asymmetric transfer hydrogenation (ATH) of a range of hindered heterocyclic ketones, in high conversion and ee, using Noyori-Ikariya catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.