This study aims to analyze variability and trends of temperature and rainfall over three agro-ecological zones (AEZs) in Central Ethiopia. Gridded rainfall and temperature data, recorded on daily basis for 35 years (1979 - 2013) at 30 meteorological stations, were used for analysis. While Mann–Kendall test was applied to analyze the trends in rainfall and temperature, Sen’s slope estimator was used to determine the magnitude of change. The study detected an upward trend of 0.07°C/annum (p < 0.001) in mean annual maximum temperature at Kolla AEZ. It also showed an upward trend of 0.06/year (p < 0.001) for both Dega and Woina Dega AEZs. Mean annual minimum temperature exhibited an upward trend of 0.03°C/year at Kolla (p < 0.001), Woina Dega (p < 0.05), and Dega (p < 0.01), signifying a 1.05°C increase between 1979 and 2013. Results from precipitation concentration index (PCI) revealed highest percentage (97.1%) of irregular distributions in annual rainfall pattern at Kolla AEZ, followed by Woina Dega (82.9%). Standardized rainfall anomalies (SRA) computed in the study also showed higher percentage (28.6%) of drought in Kolla AEZ, which experienced drought once in every 3 or 4 years. The study revealed negative annual rainfall anomalies for 18 years in Kolla and 16 years in both Dega and Woina Dega AEZs. The reduced precipitation and rise in temperature could trigger wide-ranging influences on agricultural practices and crop production of smallholder farmers. Policymakers and stakeholders should give priority in designing and introducing pro-poor plus geographically differentiated adaptive strategies.
This study aims to analyze variability and trends of temperature and rainfall over three agro-ecological zones (AEZs) in Central Ethiopia. Gridded rainfall and temperature data, recorded on daily basis for 35 years (1979 -2013) at 30 meteorological stations, were used for analysis. While Mann-Kendall test was applied to analyze the trends in rainfall and temperature, Sen's slope estimator was used to determine the magnitude of change. The study detected an upward trend of 0.07°C/annum (p < 0.001) in mean annual maximum temperature at Kolla AEZ. It also showed an upward trend of 0.06/year (p < 0.001) for both Dega and Woina Dega AEZs. Mean annual minimum temperature exhibited an upward trend of 0.03°C/year at Kolla (p < 0.001), Woina Dega (p < 0.05), and Dega (p < 0.01), signifying a 1.05°C increase between 1979 and 2013. Results from precipitation concentration index (PCI) revealed highest percentage (97.1%) of irregular distributions in annual rainfall pattern at Kolla AEZ, followed by Woina Dega (82.9%). Standardized rainfall anomalies (SRA) computed in the study also showed higher percentage (28.6%) of drought in Kolla AEZ, which experienced drought once in every 3 or 4 years. The study revealed negative annual rainfall anomalies for 18 years in Kolla and 16 years in both Dega and Woina Dega AEZs. The reduced precipitation and rise in temperature could trigger wide-ranging influences on agricultural practices and crop production of smallholder farmers. Policymakers and stakeholders should give priority in designing and introducing pro-poor plus geographically differentiated adaptive strategies.
Due to uninterrupted erosion and transportation, huge volume of sediments carried away by streams and rivers are finally deposited on the meanders, lakes, and reservoirs when the velocity of the surface water flow decreases. Kulfo River in the southern part of Ethiopia faces a challenge due to massive deposit of sediments. Hydrometeorological and spatial data of Kulfo watershed from the observed stream flow data series near Kulfo bridge and four meteorological station data were used to assess the depositional environment of Kulfo watershed. The data length covers the period from 2000 to 2019. Geomorphic parameters of the watershed were developed by using a 30m × 30m digital elevation model (DEM). The spatial distribution of sediment yield of the study area was estimated using SWAT, the soil and water assessment tool. Scenarios were developed to assess the effectiveness of watershed management interventions provided at the watershed and critical subwatershed level. The model genuinely replicated the observed discharge and sediment with an overall performance of 0.75 as measured by NSE. Twenty-one subbasins were created, and the observed average sediment yield was calculated as 11.9 ton/ha/y. The observed average sediment yield reduction at the hotspot subwatershed level postapplication of contouring, filter strip, terracing, and strip cropping were 40.79%, 57.94%, 66.02%, and 62.93%, respectively. By intricately analyzing, it can be referred that terracing is the best conservation measure to be incorporated into the affected subbasins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.