We report a simple precipitation method for the construction of spatially co-localized multi-enzyme systems based on inorganic nanocrystal-protein complexes. A spatially controlled multi-enzyme system exhibits enhanced overall catalytic performance, allowing for sensitive detection of glucose in solution.
Azo molecular glass (IAC-4) microspheres with a monodispersed diameter over ten microns were fabricated by microfluidics and unique shape manipulation was achieved based on their fascinating photoinduced deformation behaviour. After irradiation with a polarized laser beam (λ = 488 nm), the IAC-4 microspheres were transformed into uniform mushroom-like particles, and their three-dimensional (3D) asymmetric shapes were precisely manipulated by adjusting the irradiation time and the polarization state of light. By observing the particle morphology in three orthogonal views (top view, front view and side view) by scanning electron microscopy (SEM), the photoinduced deformation behaviour of the ten-micron-sized particles was comprehensively revealed in the 3D space for the first time. It was observed that the photoinduced deformation asymmetrically occurred on the upper part of the microspheres due to the strong optical absorption of the azo chromophores. Besides, the deformation manner of the upper part was decided by the direction of the electric vibration of the refracted light. This work not only depicts a clear picture of the photoinduced deformation behaviour of the ten-micron-sized azo particles upon polarized light irradiation, but also provides a new method to controllably manipulate the particle shape from spheres to complex 3D architectures.
In this work, photoinduced asymmetric morphology transformation of a type of azo molecular glass microspheres was thoroughly investigated to understand the effects of controlling factors on the process, related mechanism and unique functions. The monodispersed microspheres with their sizes over ten microns were fabricated from an isosorbide-based azo compound (IAC-4) by microfluidics. Under irradiation with linearly polarized light, the ten-micron-scale microspheres were transformed into three-dimensional (3D) asymmetric particles through directional mass transfer. Microscopic observations and optics simulation were employed to investigate the morphology transformations. The results show that the penetration depth of light at different wavelengths plays an extremely important role to affect the asymmetric deformation behavior of the IAC-4 microspheres, which determines deformation region, deformation degree and final shapes of the particles. The light intensity (50–200 mW/cm2) is a less important factor, while the deformation rate of the light-penetrated part linearly increases with the intensity. When the light intensity varies in this range, the deformation degree and the final asymmetric morphology are determined by exposure energy (light intensity × irradiation time). The IAC-4 microspheres with different sizes show distinct morphology transformation behavior and the deformed particles possess different shapes, caused by the variation of volume fraction of the light-penetrated part in the microspheres. The increase in the ratio of the light-penetrated part to the total volume of the microspheres results in larger scale deformations. Based on the above understanding, asymmetric particles with various morphologies can be fabricated through a precisely controllable way. The asymmetric particles loaded on various surfaces show ability to render remarkable wetting anisotropy of water droplets on the substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.