As part of the Comprehensive in vitro Proarrhythmia Assay initiative, methodologies for predicting the occurrence of drug-induced torsade de pointes via computer simulations have been developed and verified recently. However, their predictive performance still requires improvement. Herein, we propose an artificial neural networks (ANN) model that uses nine multiple input features, considering the action potential morphology, calcium transient morphology, and charge features to further improve the performance of drug toxicity evaluation. The voltage clamp experimental data for 28 drugs were augmented to 2,000 data entries using an uncertainty quantification technique. By applying these data to the modified O’Hara Rudy in silico model, nine features (dVm/dtmax, APresting, APD90, APD50, Caresting, CaD90, CaD50, qNet, and qInward) were calculated. These nine features were used as inputs to an ANN model to classify drug toxicity into high-risk, intermediate-risk, and low-risk groups. The model was trained with data from 12 drugs and tested using the data of the remaining 16 drugs. The proposed ANN model demonstrated an AUC of 0.92 in the high-risk group, 0.83 in the intermediate-risk group, and 0.98 in the low-risk group. This was higher than the classification performance of the method proposed in previous studies.
Comprehensive in vitro Proarrhythmia Assay (CiPA) projects for assessing proarrhythmic drugs suggested a logistic regression model using qNet as the Torsades de Pointes (TdP) risk assessment biomarker, obtained from in silico simulation. However, using a single in silico feature, such as qNet, cannot reflect whole characteristics related to TdP in the entire action potential (AP) shape. Thus, this study proposed a deep convolutional neural network (CNN) model using differential action potential shapes to classify three proarrhythmic risk levels: high, intermediate, and low, considering both characteristics related to TdP not only in the depolarization phase but also the repolarization phase of AP shape. We performed an in silico simulation and got AP shapes with drug effects using half‐maximal inhibitory concentration and Hill coefficients of 28 drugs released by CiPA groups. Then, we trained the deep CNN model with the differential AP shapes of 12 drugs and tested it with those of 16 drugs. Our model had a better performance for classifying the proarrhythmic risk of drugs than the traditional logistic regression model using qNet. The classification accuracy was 98% for high‐risk level drugs, 94% for intermediate‐risk level drugs, and 89% for low‐risk level drugs.
This study proposes a convolutional neural network (CNN) model using action potential (AP) shapes as input for proarrhythmic risk assessment, considering the hypothesis that machine-learning features automatically extracted from AP shapes contain more meaningful information than do manually extracted indicators. We used 28 drugs listed in the comprehensive in vitro proarrhythmia assay (CiPA), consisting of eight high-risk, eleven intermediate-risk, and nine low-risk torsadogenic drugs. We performed drug simulations to generate AP shapes using experimental drug data, obtaining 2000 AP shapes per drug. The proposed CNN model was trained to classify the TdP risk into three levels, high-, intermediate-, and low-risk, based on in silico AP shapes generated using 12 drugs. We then evaluated the performance of the proposed model for 16 drugs. The classification accuracy of the proposed CNN model was excellent for high- and low-risk drugs, with AUCs of 0.914 and 0.951, respectively. The model performance for intermediate-risk drugs was good, at 0.814. Our proposed model can accurately assess the TdP risks of drugs from in silico AP shapes, reflecting the pharmacokinetics of ionic currents. We need to secure more drugs for future studies to improve the TdP-risk-assessment robustness.
The SCN5A mutations have been long associated with long QT variant 3 (LQT3). Recent experimental and computation studies have reported that mexiletine effectively treats LQT3 patients associated with the A1656D mutation. However, they have primarily focused on cellular level evaluations and have only looked at the effects of mexiletine on action potential duration (APD) or QT interval reduction. We further investigated mexiletine’s effects on cardiac cells through simulations of single-cell (behavior of alternant occurrence) and 3D (with and without mexiletine). We discovered that mexiletine could shorten the cell’s APD and change the alternant’s occurrence to a shorter basic cycle length (BCL) between 350 and 420 ms. The alternant also appeared at a normal heart rate under the A1656D mutation. Furthermore, the 3D ventricle simulations revealed that mexiletine could reduce the likelihood of a greater spiral wave breakup in the A1656D mutant condition by minimizing the appearance of rotors. In conclusion, we found that mexiletine could provide extra safety features during therapy for LQT3 patients because it can change the alternant occurrence from a normal to a faster heart rate, and it reduces the chance of a spiral wave breakup. Therefore, these findings emphasize the promising efficacy of mexiletine in treating LQT3 patients under the A1656D mutation.
Methodologies for predicting the occurrence of torsade de pointes by drugs via computer simulations have been developed and verified recently, as part of the Comprehensive in vitro Proarrhythmia Assay initiative. However, the predictive performance still requires improvement. Herein, we propose a deep learning algorithm based on artificial neural networks that receives nine multiple features and considers the action potential morphology, calcium concentration morphology, and charge characteristics to further improve drug toxicity evaluation performance. The voltage clamp experimental data for 28 drugs were augmented to 2,000 data entries using an uncertainty quantification technique. By applying these data to the modified Ohara Rudy in silico model, nine features (dVm/dtmax, APresting, APD90, APD50, Caresting, CaD90, CaD50, qNet, and qInward) were predicted. These nine features were used as inputs to an artificial neural network (ANN) model to classify drug toxicity into high-risk, intermediate, and low-risk groups. The model was trained with data of 12 drugs and tested with the data of the remaining 16 drugs. The proposed ANN model demonstrated an AUC of 0.94 in the high-risk group, 0.73 in the intermediate group, and 0.91 in the low-risk group. This is higher than the classification performance of the method proposed in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.