Adenovirus (AdV) infections are one of the main causes of diarrhea in young children. Enteric AdVs probably disrupt gut microbial defences, which can result in diarrhea. To understand the role of the gut microbiome in AdV-induced pathologies, we investigated the gut microbiome of a naturally AdV-infected non-human primate species, the Malagasy mouse lemur (Microcebus griseorufus), which represents an important model in understanding the evolution of diseases. We observed that AdV infection is associated with disruption of the gut microbial community composition. In AdV+ lemurs, several commensal taxa essential for a healthy gut microbiome decreased, whereas genera containing potential pathogens, such as Neisseria, increased in abundance. Microbial co-occurrence networks revealed a loss of important microbial community interactions in AdV+ lemurs and an overrepresentation of Prevotellaceae. The observation of enteric virus-associated loss of commensal bacteria and associated shifts towards pathobionts may represent the missing link for a better understanding of AdV-induced effects in humans, and also for their potential as drivers of co-infections, an area of research that has been largely neglected so far.
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC variability and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene variability gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa ( Odoribacter , Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC variability and microbial flora as contributing factors of parasite infection.
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.