Bioconductor: open software development for computational biology and bioinformatics The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.
Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial-mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calciumactivated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.gene expression microarray ͉ serpinB2 ͉ CLCA1 ͉ FKBP51
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.