Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins.
The evolutionary history of avian paramyxovirus serotype 1 (PMV1), which includes the agents of Newcastle disease (ND), is characterized by a series of strain emergence events since viruses in this family were first recognized in the 1920s. Despite the importance of ND to the poultry industry, little is known about PMV1 strain emergence events and the subsequent dispersal and evolution of new strains. The genotype VI-PMV1 was first identified in the 1980s and has been named pigeon paramyxovirus-1 (PPMV1) because of unusual host specificity with Columbiformes (Collins et al., 1996); it has been responsible for panzootics in both chickens and pigeons during that time. Here, we used evolutionary analyses to characterize the emergence of this contemporary PMV1 lineage. We demonstrate that GVI-PMV1 arose through cross-species transmission events from Galliformes (i.e. chicken) to Columbiformes, and quickly established in pigeon populations. Our studies revealed a close association between the time of viral emergence and panzootic events of this virus. The virus appeared first in Southeastern Europe and quickly spread across the European continent, which became the epicenter for global virus dissemination. With new viral gene sequences, we show that GVI-PMV1 viruses currently circulating in North America resulted from multiple invasion events from Europe, one associated with an exotic European Columbiformes species, and that extant lineages have diversified locally. This study extends our understanding of successful viral emergence subsequent to cross-species transmission and dispersal patterns of newly emerged avian viruses, which may improve surveillance awareness and disease control of this and other important avian pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.