Lines of curvatures (LoCs) are curves on a surface that are derived from the first and second fundamental forms, and have been used for shaping various types of surface. In this paper, we investigated the LoCs of two types of log aesthetic (LA) surfaces; i.e., LA surfaces of revolution and LA swept surfaces. These surfaces are generated with log aesthetic curves (LAC) which comprise various families of curves governed by . First, since it is impossible to derive the LoCs analytically, we have implemented the LoC computation numerically using the Central Processing Unit (CPU) and General Processing Unit (GPU). The results showed a significant speed up with the latter. Next, we investigated the curvature distributions of the derived LoCs using a Logarithmic Curvature Graph (LCG). In conclusion, the LoCs of LA surface of revolutions are indeed the duplicates of their original profile curves. However, the LoCs of LA swept surfaces are LACs of different shapes. The exception to this is when this type of surface possesses LoCs in the form of circle involutes.
In this work, we introduce a new type of surface called the Log Aesthetic Patch (LAP). This surface is an extension of the Coons surface patch, in which the four boundary curves are either planar or spatial Log Aesthetic Curves (LACs). To identify its versatility, we approximated the hyperbolic paraboloid to LAP using the information of lines of curvature (LoC). The outer part of the LoCs, which play a role as the boundary of the hyperbolic paraboloid, is replaced with LACs before constructing the LAP. Since LoCs are essential in shipbuilding for hot and cold bending processes, we investigated the LAP in terms of the LoC’s curvature, derivative of curvature, torsion, and Logarithmic Curvature Graph (LCG). The numerical results indicate that the LoCs for both surfaces possess monotonic curvatures. An advantage of LAP approximation over its original hyperbolic paraboloid is that the LoCs of LAP can be approximated to LACs, and hence the first derivative of curvatures for LoCs are monotonic, whereas they are non-monotonic for the hyperbolic paraboloid. This confirms that the LAP produced is indeed of high quality. Lastly, we project the LAP onto a plane using geodesic curvature to create strips that can be pasted together, mimicking hot and cold bending processes in the shipbuilding industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.