Rapid advances in technology for highly automated vehicles (HAVs) have raised concerns about coexistence of HAVs and human road users. Although there is a long tradition of research into human road user interactions, there is a lack of shared models and terminology to support cross-disciplinary research and development towards safe and acceptable interaction-capable HAVs. Here, we review the main themes and findings in previous theoretical and empirical interaction research, and find large variability in perspectives and terminologies. We unify these perspectives in a structured, cross-theoretical conceptual framework, describing what road traffic interactions are, how they arise, and how they get resolved. Two key contributions are: (1) a stringent definition of "interaction", as "a situation where the behaviour of at least two road users can be interpreted as being influenced by the possibility that they are both intending to occupy the same region of space at the same time in the near future", and (2) a taxonomy of the types of behaviours that road users exhibit in interactions. We hope that this conceptual framework will be useful in the development of improved empirical methodology, theoretical models, and technical requirements on vehicle automation. Relevance to human factors/Relevance to ergonomics theory Smooth interactions with other road users-human or automated-is central to human safety, efficiency and satisfaction in road traffic. This paper ties together previously disparate theoretical and empirical work on road traffic interactions into a single conceptual theoretical framework.
Escalation of the alert level mandated cessation of interhospital staff movement, with residents who were rotating in other hospitals remaining there indefinitely. Undergraduate E U R O P E A N U R O L O G Y X X X ( 2 0 1 9 ) X X X -X X X a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e u r o p e a n u r o l o g y . c o m EURURO-8746; No. of Pages 2
To be successful, automated vehicles (AVs) need to be able to manoeuvre in mixed traffic in a way that will be accepted by road users, and maximises traffic safety and efficiency. A likely prerequisite for this success is for AVs to be able to communicate effectively with other road users in a complex traffic environment. The current study, conducted as part of the European project interACT, investigates the communication strategies used by drivers and pedestrians while crossing the road at six observed locations, across three European countries. In total, 701 road user interactions were observed and annotated, using an observation protocol developed for this purpose. The observation protocols identified 20 event categories, observed from the approaching vehicles/drivers and pedestrians. These included information about movement, looking behaviour, hand gestures, and signals used, as well as some demographic data. These observations illustrated that explicit communication techniques, such as honking, flashing headlights by drivers, or hand gestures by drivers and pedestrians, rarely occurred. This observation was consistent across sites. In addition, a follow-on questionnaire, administered to a subset of the observed pedestrians after crossing the road, found that when contemplating a crossing, pedestrians were more likely to use vehiclebased behaviour, rather than communication cues from the driver. Overall, the findings suggest that vehicle-based movement information such as yielding cues are more likely to be used by pedestrians while crossing the road, compared to explicit communication cues from drivers, although some cultural differences were observed. The implications of these findings are discussed with respect to design of suitable external interfaces and communication of intent by future automated vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.