Resolvin E1 (RvE1) is a potent anti-inflammatory and proresolving mediator derived from omega-3 eicosapentaenoic acid generated during the resolution phase of inflammation. RvE1 possesses a unique structure and counterregulatory actions that stop human polymorphonuclear leukocyte (PMN) transendothelial migration and PMN infiltration in several murine inflammatory models. To examine the mechanism(s) underlying anti-inflammatory actions on PMNs, we prepared [3H]RvE1 and characterized its interactions with human PMN. Results with membrane fractions of human PMN demonstrated specific binding with a Kd of 48.3 nM. [3H]RvE1 specific binding to human PMN was displaced by leukotriene B4 (LTB4) and LTB4 receptor 1 (BLT1) antagonist U-75302, but not by chemerin peptide, a ligand specific for another RvE1 receptor ChemR23. Recombinant human BLT1 gave specific binding with [3H]RvE1 with a Kd of 45 nM. RvE1 selectively inhibited adenylate cyclase with BLT1, but not with BLT2. In human PBMC, RvE1 partially induced calcium mobilization, and blocked subsequent stimulation by LTB4. RvE1 also attenuated LTB4-induced NF-κB activation in BLT1-transfected cells. In vivo anti-inflammatory actions of RvE1 were sharply reduced in BLT1 knockout mice when given at low doses (100 ng i.v.) in peritonitis. In contrast, RvE1 at higher doses (1.0 μg i.v.) significantly reduced PMN infiltration in a BLT1-independent manner. These results indicate that RvE1 binds to BLT1 as a partial agonist, potentially serving as a local damper of BLT1 signals on leukocytes along with other receptors (e.g., ChemR23-mediated counterregulatory actions) to mediate the resolution of inflammation.
We recently uncovered two new families of potent docosahexaenoic acid-derived mediators, termed D series resolvins (Rv; resolution phase interaction products) and protectins. Here, we assign the stereochemistry of the conjugated double bonds and chirality of alcohols present in resolvin D1 (RvD1) and its aspirin-triggered 17R epimer (AT-RvD1) with compounds prepared by total organic synthesis. In addition, docosahexaenoic acid was converted by a single lipoxygenase in a "one-pot" reaction to RvD1 in vitro. The synthetic compounds matched the physical and biological properties of those enzymatically generated. RvD1 proved to be 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, AT-RvD1 matched 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and they both stopped transendothelial migration of human neutrophils (EC(50) approximately 30 nM). In murine peritonitis in vivo, RvD1 and AT-RvD1 proved equipotent (at nanogram dosages), limiting polymorphonuclear leukocyte infiltration in a dose-dependent fashion. RvD1 was converted by eicosanoid oxidoreductase to novel 8-oxo- and 17-oxo-RvD1 that gave dramatically reduced bioactivity, whereas enzymatic conversion of AT-RvD1 was sharply reduced. These results establish the complete stereochemistry and actions of RvD1 and AT-RvD1 as well as demonstrate the stereoselective basis for their enzymatic inactivation. RvD1 regulates human polymorphonuclear leukocyte transendothelial migration and is anti-inflammatory. When its carbon 17S alcohol is enzymatically converted to 17-oxo-RvD1, it is essentially inactive, whereas the 17R alcohol configuration in its aspirin-triggered form (AT-RvD1) resists rapid inactivation. These results may contribute to the beneficial actions of aspirin and omega-3 fish oils in humans.
The resolvins (Rv) are lipid mediators derived from omega-3 polyunsaturated fatty acids that act within a local inflammatory milieu to stop leukocyte recruitment and promote resolution. Resolvin E1 (RvE1; (5S,12R,18R)-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is an oxygenase product derived from omega-3 eicosapentaenoic acid that displays potent anti-inflammation/pro-resolution actions in vivo. Here, we determined whether oxidoreductase enzymes catalyze the conversion of RvE1 and assessed the biological activity of the RvE1 metabolite. With NAD ؉ as a cofactor, recombinant 15-hydroxyprostaglandin dehydrogenase acted as an 18-hydroxyl dehydrogenase to form 18-oxo-RvE1. In the murine lung, dehydrogenation of the hydroxyl group at carbon 18 position to form 18-oxo-RvE1 represented the major initial metabolic route for RvE1. At a concentration where RvE1 potently reduced polymorphonuclear leukocyte (PMN) recruitment in zymosan-induced peritonitis, 18-oxo-RvE1 was devoid of activity. In human neutrophils, carbon 20 hydroxylation of RvE1 was the main route of conversion. An RvE1 analog, i.e. 19-(p-fluorophenoxy)-RvE1, was synthesized that resisted rapid metabolic inactivation and proved to retain biological activity reducing PMN infiltration and pro-inflammatory cytokine/chemokine production in vivo. These results established the structure of a novel RvE1 initial metabolite, indicating that conversion of RvE1 to the oxo product represents a mode of RvE1 inactivation. Moreover, the designed RvE1 analog, which resisted further metabolism/inactivation, could be a useful tool to evaluate the actions of RvE1 in complex disease models.Most inflammatory processes are self-limiting (1), implicating the existence of endogenous circuits for anti-inflammation and/or pro-resolution mediators that are operative during the temporal events of host defense and inflammation (recently reviewed in Refs. 2 and 3). We identified and characterized lipid mediators that are generated during spontaneous resolution phase and that possess anti-inflammatory and/or pro-resolving properties; these include lipoxins, resolvins, and protectins (2). Like other autacoids, these lipid mediators are generated in response to stimuli, act locally, and may be rapidly inactivated by further metabolism via enzymatic pathways (4 -6). Resolution of inflammation is an active process governed by timely and spatially regulated formation and inactivation of local lipid mediators and termination of pro-resolving signals, so that tissues can return to homeostasis (4). Thus, it is important to identify the further metabolic products of these pro-resolving lipid mediators and evaluate their bioactivities in vivo.The resolvins and protectins are new families of lipid mediators derived from omega-3 polyunsaturated fatty acids, namely eicosapentaenoic acid and docosahexaenoic acid, that are generated and act locally at sites of inflammation, where they counterregulate polymorphonuclear leukocyte (PMN) 2 infiltration and promote resolution (for recent reviews, se...
Patent foramen ovale (PFO) is the most common congenital heart abnormality of fetal origin and is present in approximately ∼25% of the worldwide adult population. PFO is the consequence of failed closure of the foramen ovale, a normal structure that exists in the fetus to direct blood flow directly from the right to the left atrium, bypassing the pulmonary circulation. PFO has historically been associated with an increased risk of stroke, the mechanism of which has been attributed to the paradoxical embolism of venous thrombi that shunt through the PFO directly to the left atrium. However, several studies have failed to show an increased risk of stroke in asymptomatic patients with a PFO, and the risk of stroke recurrence is low in patients who have had a stroke that may be attributed to a PFO. With the advent of transoesophageal and transthoracic echocardiography, as well as transcranial Doppler, a PFO can be routinely detected in clinical practice. Medical treatment with either antiplatelet or anticoagulation therapy is recommended. At the current time, closure of the PFO by percutaneous interventional techniques does not appear to reduce the risk of stroke compared to conventional medical treatment, as shown by three large clinical trials. Considerable controversy remains regarding the optimal treatment strategy for patients with both cryptogenic stroke and PFO. This Primer discusses the epidemiology, mechanisms, pathophysiology, diagnosis, screening, management and effects on quality of life of PFO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.