Background: Carbon fibre reinforced epoxy (CFRP) is susceptible to impact damage which could resulted in reduction of the mechanical properties. This paper studies the architecture of barely visible impact damage (BVID) to comprehend the extent of damage on quasi-isotropic CFRP laminates of varying thickness (i.e. 16, 24 and 32-ply laminates of 3, 4 and 5 mm respectively). Methods: Quasi-static indentation is chosen to produce BVID on CFRP laminates, followed by using non-destruction evaluation method, namely conventional contact-type ultrasonic testing (UT) and C-mode scanning acoustic microscopy (C-SAM) method. Results: The findings revealed (1) the size and shapes of the BVID on CFRP laminates, (2) no damage found at the point of damage, and (3) the bridging between the point of impact to the outer damaged diameter due to the consequence of diverse orientation of carbon fibre strips which exhibit excellent mechanical properties before structural failure. Conclusions: The results concluded that the UT and C-SAM method can identify both the pristine region and the internal damaged structures in CFRP laminates.
Halloysite nanotubes (HNT) and carbon nanotubes (CNT) are potential nanoparticles that can be incorporated into polymer adhesives to enhance their performance for repairing damaged composite structures. However, the nanoparticle adhesive blends need to be assessed as their performance may be affected by the preparation techniques, nanoparticles types, and mass concentration. The present study aimed to evaluate the mechanical properties (specifically tensile and adhesion properties), physical properties (including wetting and rheological characteristics), thermal properties, and chemical properties of two commercially available adhesives, namely Epo‐Tek 301 (consists of bisphenol A diglycidyl ether resin, known as DGEBA) and Nano‐Force E100 (consists of bisphenol A/F epichlorohydrin premixed with CNTs). Furthermore, DGEBA adhesive with 1, 3, 5, and 9 wt% HNTs, and DGEBA adhesive with 1 wt% of treated and untreated CNTs were prepared. The findings revealed that there were no appreciable differences in the mechanical, physical, thermal, and chemical properties between the neat DGEBA and DGEBA with 1 wt% HNTs. However, the mechanical and physical properties deteriorated, and the char yield increased after thermal degradation for adhesives containing more than 1 wt% HNTs. On the other hand, no enhancement in all properties was observed for adhesives containing CNTs. Moreover, the adhesives containing CNTs exhibited higher viscosity than Nano‐Force E100, which could hinder resin infiltration for composite repair applications. Therefore, the types of adhesive to be used for repairing impact‐damaged composite structures must be prudently selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.