Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>10(4)), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius <10 mm). Finally, the underlying mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications.
A novel vertical 3D RRAM structure with greatly improved reliability behavior is proposed and experimentally demonstrated through basically compatible process featuring self-localized switching region by sidewall electrode oxidation. Compared with the conventional structure, due to the effective confinement of the switching region, the newly-proposed structure shows about two orders higher endurance (>108 without verification operation) and better retention (>180h@150 °C), as well as high uniformity. Corresponding model is put forward, on the base of which thorough theoretical analysis and calculations are conducted as well, demonstrating that, resulting from the physically-isolated switching from neighboring cells, the proposed structure exhibits dramatically improved reliability due to effective suppression of thermal effects and oxygen vacancies diffusion interference, indicating that this novel structure is very promising for future high density 3D RRAM application.
Light‐tunable resistive switching (RS) characteristics are demonstrated in a photochromophore (BMThCE)‐based resistive random access memory. Triggered by nondestructive ultraviolet or visible light irradiation, two memory‐type RS characteristics can be reversibly modulated in the same device upon a narrow range of applied voltage (<6 V), accompanied by the photochromophores in the active layer reversibly changed between ring‐open state (namely, o‐BMThCE) and ring‐closed state (namely, c‐BMThCE). The o‐BMThCE‐based memory exhibits a write‐once‐read‐many characteristic with a high current on/off ratio of 105, while the c‐BMThCE‐based one shows a flash characteristic. Both of the RS characteristics present good nonvolatile stability with the resistance states maintained over 104 s without variation. This RS modulation is possibly related to the formation and rupture of conductive filaments, which formed along channels consisting of BMThCE trapping molecules. This work provides a new memory element for the design of light‐controllable high density storage and data encryption technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.