Purpose This study aimed to optimize the trade-in pricing strategy. To leverage market share, many sellers adopt trade-in strategy for advance selling, Customers can return their old products at a discount price when they buy new products. This can help increase the market share and decrease natural resource consumption. Design/Methodology/Approach We consider a seller who sells new-generation products over two periods: advance selling and regular selling. Based on the rational expectation equilibrium, we adopt dynamic programming to construct a two-period pricing model with three different trade-in strategies–only in period 2, in both periods, and not at all–explaining the trade-in strategy as a promotion tool used by a monopolist to discriminate for advance selling between new and old customers. Findings The results suggest that the optimal price is determined by the proportion of old customers, discount factor and product innovation level. Whether and when to give a trade-in rebate to old customers depends on these parameters. The seller’s choice of optimal trade-in strategy depends on the threshold value of the new customer demand and trade-in demand. Originality/Value Most existing literature focuses on advance selling strategies and trade-in strategies. To the best of our knowledge, this is a pioneering study that adopts trade-in as part of the advance selling strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.